
Technologies

AES 256 IP on
Xilinx App Store
AES 256 has a key length of 256 bits, supports the largest bit size,
and is practically unbreakable by brute force based on current
computing power, making it the strongest encryption standard and
more secure.

By -

Dheeraj Punia
Hitesh Arora

WWW.LOGIC-FRUIT.COM

WHITEPAPER

https://www.logic-fruit.com/

Technologies AES 256 IP on Xilinx App Store Page No #02

Contents

Chapter 1: Xilinx App Store. 04

What is the Xilinx App Store?. 04

Features of Xilinx App Store. 04

3-step Easy Evaluation. 05

Support for Docker Containers. 06

Chapter 2: FPGA IP Licensing Principle. 06

Licensing Modes. 07

Licensing Models. 07

A Protected IP. 07

DRM Controller IP. 08

DRM Bus. 09

DRM Activator IP. 09

DRM Activator interface with IP to protect. 10

DRM Hardware integration. 11

Modify the Design:. 11

Chapter 3: AES 256 IP. 12

Overview. 12

Block Diagram: AES 256 IP. 15

Symmetric Encryption vs Asymmetric Encryption. 14

Key Features & Benefits. 14

Core Implementation. 14

FPGA Device Utilization: Post-synthesis results. 15

Product Release Support: Performance and Quality metrics. 15

Secure Algorithm: Data-Security and Privacy:. 16

Chapter 4: Xilinx Vitis Environment. 16

Install OpenCL Installable Client Driver Loader. 16

Vitis Software Platform Installation. 16

Installing Xilinx Runtime and Data Center Platforms. 17

Setting Up the Environment to Run the Vitis Software Platform. 17

Technologies AES 256 IP on Xilinx App Store

Chapter 5: Build and Run App. 18

Synthesize the app design. 18

Compile & Run the Application. 18

Chapter 6: Docker Containers and App Run. 20

Development Environment. 20

Flow of AES app. 20

Run the AES 256 App on Xilinx App Store. 20

Docker Container Details. 27
Dependency List. 27
Environment setup. 27
Development Steps. 27
Application Usage. 29
Useful Xilinx commands:. 29

Chapter 7: Troubleshooting. 30

Successful Build. 30

Use Vitis Analyzer tool to visualize and navigate reports. 31

[Error] Unable to find DRM controller registers. 31

[Error] Path is not a valid file: cred.json. 32

[Error] Metering web service error 400:
User account has no entitlement. 32

[Error] Metering web service error 400. 33

[XRT] Error: CU was deadlocked? Hardware is not stable. 34

[Error] Bus Interface property FREQ_HZ does not
match between <port_1> and <port_2>. 35

[XRT] Warning: unaligned host pointer ‘0x7fffxxxxxx’
detected, this lead to extra memcpy. 35

[XRT] Error: Cannot add a component to the argument. 36

Check md5sum value of the <file_name>.xclibin. 36

The first step is you can see which devices are present on your host. 37

Determine Linux release:. 37

Unload/reload XRT drivers:. 38

Flash the card with a deployment platform:. 38

Reverting the card to factory image:. 40

Page No #03

Technologies AES 256 IP on Xilinx App Store Page No #04

Chapter 1: AES 256 IP on Xilinx App Store

What is the Xilinx App Store?
The Xilinx App Store makes it easy for one to evaluate, purchase, and deploy accelerated applications

using cloud-based services or on-premises PC systems as per requirements. It offers a powerful platform

to host, market, and sell one’s solutions using a managed, easy-to-use, secure Digital Rights

Management (DRM) infrastructure. The Xilinx app store is developed by Xilinx and its platform partners

and provides pre-built, containerized software that can be easily assessed, bought, and deployed on edge

or on the cloud.

The Xilinx App Store provides a powerful platform for hosting, marketing, and distribution of your

solutions leveraging a managed, convenient and stable DRM architecture to help multinational consumers

accessing their Cloud and/or on-site technologies.

Xilinx app store home page: Xilinx App Store

Features of Xilinx App Store
Global access and Free trial: Evaluate for free, sell and purchase globally. The Xilinx App Store

provides customers with a one-stop shop for discovering, evaluating, and deploying FPGA-

accelerated technologies. Make the ideas with a broad customer base of companies around the world

readily discoverable.

Secure and Easy Checkout: Enabled with payments through Accelize DRM and Stripe. Flexible

subscription plans are available. Choose the business-model accounting – subscription, payment for

use, time-based or continuous licensing - The App Store DRM infrastructure helps everything that

allows you to concentrate on your clients and grow the added value of your solutions. Deliver it as a

Docker container or encrypted IP Core, and work with the App Store team to incorporate the IP

Digital Rights Management (DRM) into your IP architecture or FPGA app.

Deployment Options:

a. Cloud-based HPC is a partner with Nimbix and Amazon AWS.

b. On-premises with Alveo Data accelerator cards/Kria SOMs/PC system.

c. Support for Edge and Embedded computing.

Easy & Portable: Self-service, free trials, online payment, and Containerized apps. Include

application specifics and primary advantages in a profile and product catalog listing in the app store.

And we're equipped to publish, explore and sell!

Technologies AES 256 IP on Xilinx App Store Page No #05

3-step Easy Evaluation
1. Select an app as per the requirement.

2. Get Entitlement.

3. Download and Run.

Technologies AES 256 IP on Xilinx App Store Page No #06

Chapter 2: FPGA IP Licensing Principle

Support for Docker Containers
A container is a standard unit of software that packages up code and all its dependencies so the application

runs quickly and reliably from one computing environment to another.

The core licensing technology is based on a license key that unlocks the proper functioning of an FPGA

design at runtime. After its configuration, the license key is loaded into the FPGA, typically through PCIe.

The license key is an encrypted container that provides each protected function within the FPGA with a

secret Activation Code. This security is enforced in HDL by inserting blocking points into control logic and

masking points into datapath logic using individual bits of the activation code. The design is initially

locked when the bitstream is inserted into the FPGA board. After that, you'll need the Accelize DRM library

to unlock the design with a valid license.

Separates application dependencies from infrastructure.

In loosely separated environments called a container,

Docker offers the ability to pack and run the program.

The enclosure and safety allow one to operate several

containers on a given host at the same time. Containers

are lightweight and hold all the necessary applications

so that we do not have to focus on what is running on

the host at the moment. You can simply swap containers

when you're working to make sure anyone who you

share has the same workable container.

Technologies AES 256 IP on Xilinx App Store Page No #07

Licensing Modes
Static Licensing: A file-based scheme that is deployed by statically packaging the license key into

an encrypted license file, locally stored on the FPGA card hosting server.

Dynamic Licensing: A server-based scheme that is executed by a license server delivering license

keys. Specifically, a standard stream of time-limited single-use license keys is supplied by the

license server.

Licensing Models
Node-Locked Licensing: This is a static licensing mode. A license grant that requires an

application to be executed on, and only on, a particular FPGA card, and is perpetual, transferable,

and non-revocable.

Floating Licensing: This is a dynamic licensing mode. A Floating License is a license grant that

allows execution on any FPGA card of a designated number of concurrent instances of the

application.

Metered Licensing: This is also a dynamic licensing mode. It facilitates unrestricted deployment

of an application on any FPGA card and includes monthly post-use billing based on calculated use.

Metered license grants are linked to authenticated users, and the metering information produced

within the FPGA is gathered dynamically and securely by the DRM service.

A Protected IP
DRM Controller IP

The DRM Controller controls the transmission of confidential information between the System

Software (AXI4-Lite Status & Control interface) and the Protected IP Cores (DRM Bus interface).

Technologies AES 256 IP on Xilinx App Store Page No #08

The DRM Controller IP's core functions are as follows:

 Read and decrypt the encrypted License Key, and send the Activation Codes and Credit timers to
 the Protected IP Cores in a safe manner.

 Collect metering data from protected IP cores and send an encrypted and authenticated
 meteing data block to the system.

 The DRM Controller also collects the design data (Protected IPs VLNVs, 64 bits each) and device
 identification (Public Chip ID (DNA) or PUF) needed to request the License Key.

In order to service numerous Protected IPs, only one DRM Controller may be created in the Chip

Design. Integrate the DRM controller through following the below steps:

 Give Accelize the amount of protected IP instances you want and they'll provide you the right
 DRM HDK.

 At the design's top level, instantiate the DRM Controller.

 Connect the AXI4-Lite System Bus to the DRM Controller.

 Activate the DRM Activator and add the DRM interface to protect the IPs.

 Connect the DRM Controller to the various protected IP instances.

Technologies AES 256 IP on Xilinx App Store Page No #09

DRM Bus

The AXI4-Stream protocol is used to communicate on the DRM Bus, with the IP Activator acting as a

slave and the DRM Controller acting as the master. The number of Protected IP cores in the

architecture determines the size of the DRM bus. There are three sections of each IP connection:

Communication on the DRM Bus uses an AXI4-Stream protocol where the IP Activator is a slave and the

DRM Controller is the master. A single Controller is always required but any number of Activators is

supported (1 to N connections).

The Clock and Reset ports

Direction Size

in DRM bus clock: must be identical to
all the DRM Activators clock

DRM bus asynchronous active low reset

drm_aclk

drm_arstn in

1

1

Name Description

The DRM Controller to Activator channel

Direction Size

in AXI4-Stream Ready signal for DRM
Controller to IP Activator Channel

AXI4-Stream Valid signal for DRM
Controller to IP Activator Channel

drm_to_uip<IDX>_tready

drm_to_uip<IDX>_tvalid in

1

in AXI4-Stream Data signal for DRM
Controller to IP Activator Channeldrm_to_uip<IDX>_tdata 32

1

Name Description

The Activator to DRM Controller channel

DRM Activator IP

Direction Size

out AXI4-Stream Ready signal for IP
Activator to DRM Controller Channel

AXI4-Stream Valid signal for IP
Activator to DRM Controller Channel

uip<IDX>_to_drm_tready

uip<IDX>_to_drm_tvalid in

1

in AXI4-Stream Data signal for IP
Activator to DRM Controller Channeluip<IDX>_to_drm_tdata 32

1

Name Description

Technologies AES 256 IP on Xilinx App Store Page No #10

The main functionality of the DRM Activator IP is to:

 Deliver a 128 bits Activation Code to the IP Core for behavior control.

 Maintain a credit timer for time based activation.

 Store a metering counter for activities measurement.

Direction Size

in IP Core clock

Level-sensitive signal synchronous to
ip_core_aclk that increments the

Metering counter when sampled to ‘1’

ip_core_aclk

metering_event in

1

out Activation Code as provided by the
License Key currently loaded.activation_code 128

1

Name Description

The interface with the IP Core is a simple register interface with control signals.

IP core signals that interact with the DRM Activator must be synced with the IP Core clock domain,

ip_core_aclk signal. The IP core will implement its own CDC on an internal level. FSM transition and

datapath gates are controlled by the IP Core using the 128 bits of the Activation Code output.

The DRM Activator has an inbuilt 64-bit Metering counter that stores the IP Core's activities. When the

session is ended, it is synchronously reset through the DRM Bus protocol. It is increased by asserting the

metering_event input for 1 clock cycle under the direction of the IP Core. Because the metering_event is a

level-sensitive signal, ensure it is de-asserted once the event is over.

DRM Activator interface with IP to protect

Technologies AES 256 IP on Xilinx App Store Page No #11

By using conditional logic depending on the Activation Code value, you may protect certain important code

(128 bits). Count data metrics associated with IP consumption (bytes, frames, or any other unit) and

produce a pulse on the DRM Activator event input for each usage unit.

You will receive a zip file from Accelize. It has three folders that include the HDK sources:

The common folder contains the activator and controller's IP common structure.

The top-level VHDL controller and the Verilog Wrapper are both found in the controller folder. Each
IP instance in your design has two AXI4-Stream interfaces, thus the controller has the right amount
of ports (already protected IPs and IPs to protect).

The activator folder contains the VHDL core for the activator as well as numerous simulation and
synthesis wrappers. For each IP core type, a single DRM Activator is sent. The same activator will be
invoked many times by several instances of the same IP core.

The AES-256 application

Protect the IP cores: This can be accomplished in a variety of ways. We propose to develop a wrapper
in which the DRM Activator and the IP core are instantiated. To integrate DRM protection and usage
measurement algorithms, the original IP core must be significantly updated. Managing numerous
instances of the same protected IP is built-in with this technique.

Create a wrapper: The wrapper interface combines the IP interface with the DRM AXI4-Stream
interface for communication with the DRM Controller.

The most important step is to intelligently change the original IP core such that a piece of IP internal
logic is paired with the activation code bits given by the DRM activator signal to activate or deactivate
part or all of the IP capabilities.

The activation code's 128 bits are utilized to define criteria for IP activation and deactivation.
Individual bits, groups of bits, and ranges of bits can be utilized in the IP code to instrument it in
various ways such as gate signals, switch FSM states, and select functional parts.

DRM Hardware integration

Modify the Design:

Technologies AES 256 IP on Xilinx App Store Page No #12

Chapter 3: AES 256 IP

Overview
The Rijndael cipher was chosen as the symmetric key ciphering algorithm in the AES specification, which

stands for "Advanced Encryption Standard." AES encrypts a message using a private key that can only be

decrypted by the key holder. This is useful for a variety of purposes, but one example is a laptop that

encrypts the contents of the hard disk when it is idle.

A state is a matrix of bytes that the AES utilizes to operate. The plain text is transformed into the final

ciphertext after many rounds of transformation. One round reads the state into four 4-byte variables and

transforms them, XOR’s them using a 32-byte round key, and stores the results. In compliance with the

NIST Advanced Encryption Standard, the AES encryption IP core implements Rijndael encoding and

decoding. It works with 256-bit blocks and is programmed to work with 256-bit key length.

The AES 256 algorithm processes plain data blocks of 128 bits, generates cipher data blocks of 128 bits

using cipher keys of 256 bits (32 bytes). AES uses symmetric key encryption, which involves the use of only

one secret key to cipher and deciphers the information. The AES-256 application performs some

encryption algorithms on the data provided by the user in the form of the file. The data is then pushed to

the Alveo U200 card in the form of a buffer, the device will perform the encryption on the plaintext and

send back the ciphertext in the form of a buffer. After the encryption the user will get an output file with

the encrypted data in it. In the AES256 application, we don’t have any C/C++ kernel, the encryption

happens in the RTL kernel.

AES 256 has a key length of 256 bits, supports the largest bit size, and is practically unbreakable by brute

force based on current computing power, making it the strongest encryption standard and more secure.

In the wrapper, instantiate the customized IP core and DRM Activator and connect them. They may
be instantiated once or several times in your FPGA design once your IP is secured.

You are good to move ahead. Now simulate your design.

Key Size Possible Combinations Rounds Time to Crack (years)

128

192

256

3.4 x 10^38

6.2 x 10^57

1.1 x 10^77

10

12

14

1.02 x 10^18

1.872 x 10^37

3.31 x 10^56

Technologies AES 256 IP on Xilinx App Store Page No #13

Block Diagram: AES 256 IP

Key
RAM

Data
Register

Sub
Bytes

Shift
Rows

Mix
Column

128-bit
(block)

AES-256

Done

Dout

128-bit
(Block)

Cipher-Text Valid Out

Plain Text Valid In AES KEY
(256-bit)

Init Vector

Reset
RD/WR

Start
Clock

Plain Text
(Data-In)

Counter

XOR

Technologies AES 256 IP on Xilinx App Store Page No #14

Signal
width Mode

Clock signal. Sets up the operational clock
frequency.

Reset signal.

clk

rst

in

in

in The initialization vector is an arbitrary number that
is used along with the secret key for data encryption.init_vector

1

256

1

Signal
Name Description

Symmetric Encryption vs Asymmetric Encryption

One key is shared between
two or more entities

Out of bound

Keys

Key Exchange

The algorithm is less
complex and faster

One entity has a public key and
the other entity has a private key

Distributed inbound

The algorithm is more
complex and slower

Grows exponentially as users
grow

Grows linearly as users
grow

Speed

Number of keys

Use

Security

Key encryption and
distributing keys

Confidentiality, authentication,
non-repudiation

Bulk encryption

Confidentiality

Attributes Asymmetric Symmetric

The input signals are synchronized and sampled on the clock's rising side. Flip-flops drive output signals,

which are not coupled directly to input signals by combinational circuits.

Key Features & Benefits
Data Path runs on 100 MHz X 256 width.

Programming of Key and Initialization Vector Supported.

Buffer-free implementation of RTL code is fast and easy to integrate into SoCs.

Pipelined instances architecture with Vendor-independent code.

Support for CTR mode. On-demand availability for CBC mode.

Solution Type: IP Core.

End-Market: Automotive, Broadcast, Consumer, Industrial, Medical, Military, Computer & Storage,
Wireless.

Core Implementation

Technologies AES 256 IP on Xilinx App Store Page No #15

A message before encryption or after decryption.
(Input data)

AES Cipher key is used for enciphering and
deciphering data.

plaintext

cipherkey

in

in

in This indicates the plain text is valid to process at
the input terminal.valid_in

256

1

out This indicates the cipher-text is encrypted correctly
and available at the output terminal.valid_out 1

out Encrypted data are available to send or use
accordingly.ciphertext 256

256

Number of Slice
Registers/FF

Number of Slice LUTs

18511

48528

1792

4

Number of LUTRAM

Number of Block RAM

Tool/IDE Xilinx Vivado

Maximum Frequency 125 MHz

It is a pipelined design. (up to 256/8 Gbps)

16 clock-cycles

Throughput

Input-to-Output Delay

IP Quality Metrics Generic

Modelsim, Xilinx Vivado, Lattice Radiant

Validated on major FPGA Devices

Simulators supported

Hardware validated

Source language VHDL/Verilog

VHDL

On-demand availabilities

Testbench language

Software drivers provided

FPGA Device Utilization: Post-synthesis results

Product Release Support: Performance and Quality metrics

Technologies AES 256 IP on Xilinx App Store Page No #16

IP Quality Metrics Deliverables

Readme file Yes

Additional customer deliverables On-demand availabilities

Target specific netlist/fully synthesizable
source code

Simulation model and testbench with
FIPS test vectors

Design file (encrypted source
code/post-synthesis netlist)

Testbench or design example

IncludedDocumentation with revision
control

Note: The steps and procedure given in this section is applicable to PC running on Ubuntu.

1.

1. Go to the Xilinx Downloads Website.

2. Download the installer for your operating system.

3. Run the installer, which opens the Xilinx Unified 2020.2 Installer. Click Next.

Vitis Software Platform Installation

Cache Attack: The IP doesn’t have any memory elements. It doesn’t hold the plain text, keys, and
initialization vector in the system.

Timing Attack: The time to complete the encryption or decryption doesn’t depend on the complexity
of the key/initialization vector. So the execution time depends on the size of plain text.

Power Monitoring Attack: The power variation of the hardware is very low.

EM - Fault Analysis Attacks: Hardware design(board EM shielding) makes sure the secret data is
secure.

Masking and temporal noise insertion with desynchronization make the IP SPA & DPA secure. (TRNG
code block can be introduced to generate a random number to mask the actual transactions - TBD)

Secure Algorithm: Data-Security and Privacy:

Chapter 4: Xilinx Vitis Environment

On Ubuntu, the ICD library is packaged with the distribution. Install the following packages:

 ocl-icd-libopencl1

 opencl-headers

 ocl-icd-opencl-dev

Install OpenCL Installable Client Driver Loader

Technologies AES 256 IP on Xilinx App Store Page No #17

1.

To configure the environment to run the Vitis software platform, run the following scripts, which set up
the environment to run in a specific command shell.

#setup: XILINX_VITIS and XILINX_VIVADO variables
source <Vitis_install_path>/Vitis/2020.2/settings64.sh
#setup: XILINX_XRT
source /opt/xilinx/xrt/setup.sh

After setting up the environment enter the command to open the Vitis IDE: vitis
(Required if manually working with the IDE. Often used with command-line tools and scripts.)

To specify the location of any platforms you have installed as directed in Installing Data Center Platforms,
set the following environment variable:

export PLATFORM_REPO_PATHS=<path to platforms>

4. Enter your Xilinx user account credentials, and then select Download and Install Now. Click Next.

5. Accept the terms and conditions by clicking each I Agree checkbox. Click Next.

6. Select Vitis, and then click Next.

7. Optionally, customize your installation by selecting design tools and devices, and then click Next.

8. Select the installation directory, optional shortcut, and file association options, and then click Next.

9. Review the installation summary, which shows the options and locations you have selected.

10. To proceed with the installation of the Vitis software platform, click Install.

1. To download the DEB file, go to the Alveo Packages webpage.

2. Select your platform and operating system and proceed and follow the steps 1 to 3 on the webpage or
continue as below:

The Xilinx runtime (XRT) is a low-level communication layer (APIs and drivers) between the
host and the card. Download the package and enter the command to install the package.

Install using: sudo apt install <deb-dir>/<xrt_filename_OS>.deb

Download the Deployment Target Platform: The deployment target platform is the
communication layer physically implemented and flashed into the card. Download the package.

Install using: sudo apt install <deb-dir>/<deployment_shell_filename_OS>.deb

Download the Development Target Platform: The development target platform is required if
you are building your own applications. Download the package.

Install using: sudo apt install <deb-dir>/<development_shell_filename_OS>.deb

i. Download the Xilinx Runtime

ii. Installing Data Center Platforms

Setting Up the Environment to Run the Vitis Software Platform

Installing Xilinx Runtime and Data Center Platforms

Chapter 5: Build and Run App

1.

1. Edit Makefile: The one located in the parent folder of the app project. The required variables are set as
 per the specified directory structure at the original app build time. Please update the required variables
 as per the directory structure in your project and PC.

i. Change "VTS_PLATFORM" variable
ii. Change “OUTPUT_DIR” variable
iii. Change "KERNEL_FREQ_MHZ" variable [Optional, if required]

#setup: XILINX_VITIS and XILINX_VIVADO variables

source <Vitis_install_path>/Vitis/2020.2/settings64.sh

#setup: XILINX_XRT

source /opt/xilinx/xrt/setup.sh

2. Setup Vitis and XRT Environment

i. Enter command: make clean_all (clears previous object and output files)

ii. Enter command: make (launches the app build process)

1. Create an account on [Accelize Portal] (https://portal.accelize.com)

2. Create your Access Key on [Accelize Portal - Access Key] (https://portal.accelize.com/front/cus
 tomer/apicredential)

3. Follow and Install [Accelize DRM Library] (http://accelize.s3-website-eu-west-1.ama
 zonaws.com/documentation/stable/drm_library_installation.html#installation-from-
 packages) version 2.3 or higher

Replace "app/{your-exec-env}/cred.json" with your Access Key

Edit "app/{your-exec-env}/conf.json" to change "boardType" and "frequency" parameters
[Optional]

On-Premise Execution

cd app
source /opt/xilinx/xrt/setup.sh
make clean all
./app {path-to-xclbin}

3. Launch synthesis

Prerequisites: If designing and developing any new application with Accelize DRM.

Compile & Run the Application

Synthesize the app design

Technologies AES 256 IP on Xilinx App Store Page No #18

https://portal.accelize.com
https://Portal.accelize.com/front/customer/apicredential
https://Portal.accelize.com/front/customer/apicredential
http://accelize.s3-website-eu-west-1.amazonaws.com/documentation/stable/drm_library_installation.html#installation-from-packages
http://accelize.s3-website-eu-west-1.amazonaws.com/documentation/stable/drm_library_installation.html#installation-from-packages
http://accelize.s3-website-eu-west-1.amazonaws.com/documentation/stable/drm_library_installation.html#installation-from-packages

The minimum system requirements for running the Alveo™ U200 Data Center accelerator cards are listed
below:

Development Environment

Minimum System Requirements

Technologies AES 256 IP on Xilinx App Store Page No #19

Component Requirement

System Memory

For deployment installations, a minimum of 16 GB
plus application memory requirements is required.

For development installations, a minimum of
64 GB of device memory is required,

but 80 GB is recommended.

Internet Connection Required for downloading drivers and utilities.

Hard disk space Satisfy the minimum system requirements for
your operating system.

PCI Express® 3.0-compatible with
one dual-width x16 slot

225W via PCI Express Slot connection and
8-pin PCI Express Auxiliary Power cable.

Motherboard

System Power Supply

Linux, 64-bit:
• Ubuntu 16.04, 18.04 • CentOS 7.4, 7.5, 7.6

• RHEL 7.4, 7.5, 7.6
Operating System

Component Output (host machine)

Specification
about the card

Card type: u200
Flash type: SPI

Flashable partition running on FPGA:
xilinx_u200_xdma_201830_2,

[ID=0x5d1211e8],[SC=4.2.0]

Flashable partitions installed in system:
xilinx_u200_xdma_201830_2,

[ID=0x5d1211e8],[SC=4.2.0]

Operating System: Ubuntu 18.04.5 LTS

Kernel: Linux 5.4.0-73-generic

OS Version

Kernel Version

Vitis v2020.2 (64-bit)Vitis Version

Xclmgmt , xoclDriver Used

[0000:01:00.0]BSP Version

20.10.6BSP Version

Technologies AES 256 IP on Xilinx App Store Page No #20

Chapter 6: Docker Containers and App Run

1.

1. Open Xilinx Device and Load the XCLBIN.

2. Set up the Buffers that are used to transfer the data between the host and the device.

3. Use the Buffer APIs for the data transfer between host and device (before and after the kernel
execution).

4. Use Kernel and Run handle/objects to offload and manage the compute-intensive tasks running on
FPGA.

Flow of AES app

1. Obtain an Account Access Key: An access key is required to authenticate a user and grant them access to

the application based on their entitlements. To obtain your account access key, follow these steps:

Run the AES 256 App on Xilinx App Store

Development Environment

i. Login to Xilinx App Store
ii. Click the button labeled "Manage Account" to view entitlements.
iii. Click the "Access Key" link on the left side menu
iv. Click the "Create an Access Key" button.
v. Download the resulting file "cred.json" to the home location or recommended to in /tmp

folder

Component Requirement

System Memory

For deployment installations, a minimum of 16 GB
plus application memory requirements is required.

For development installations, a minimum
of 64 GB of device memory is required,

but 80 GB is recommended.

Internet Connection Required for downloading drivers and utilities.

Platform Alveo U200

Hard disk space Satisfy the minimum system requirements for
your operating system.

PCI Express® 3.0-compatible with
one dual-width x16 slot

225W via PCI Express Slot connection and 8-pin
PCI Express Auxiliary Power cable.

Motherboard

System Power Supply

Linux, 64-bit:
• Ubuntu 16.04, 18.04 • CentOS 7.4, 7.5, 7.6

• RHEL 7.4, 7.5, 7.6
Operating System

Technologies AES 256 IP on Xilinx App Store Page No #21

This command will let us install docker on the host machine.

To verify that the Docker has been properly installed you can run

docker run hello-world

By default the Docker daemon will check if the host machine has the image of the hello-world if not found

it will automatically pull the images from the Docker Hub.

If docker is already installed, enable it:

systemctl restart docker
systemctl enable docker

2. [Optional] If you generate the cred.json file you can directly run the application by running the demo
script just for dry run.

3. Host Setup: The Xilinx Runtime (XRT) host application is supported on Ubuntu 16.04 /18.04 and CentOS
 7.x. With sudo access, use the following command to download and run the setup script:

4. Install Docker (If not installed already): With�sudo access, use the following command to run the
 utility script to install docker.

Note: Please wait for the installation to complete.� During this time you may need press [Y] to continue

the host setup.

If you choose to flash the FPGA, you will need to cold reboot the local machine after the installation is

completed to load the new image on the FPGA. The script for host setup can be used to set up other

versions XRT and shell. Please check https://github.com/Xilinx/Xilinx_Base_Runtime for more details.

i. Clone GitHub Repository for Xilinx Base Runtime
 git clone https://github.com/Xilinx/Xilinx_Base_Runtime.git

ii. Go to the Xilinx Base Runtime
cd Xilinx_base_Runtime

iii. Run the Host Setup Script
 ./host_setup.sh -v 2020.2

a. Go to Xilinx_Base_Runtime utilities directory
cd Xilinx_Base_Runtime/utilities

b. Run the Docker installation script
 ./docker_install.sh

https://github.com/Xilinx/Xilinx_Base_Runtime.git
https://github.com/Xilinx/Xilinx_Base_Runtime

echo $XILINX_DOCKER_DEVICES
--device=/dev/xclmgmt256:/dev/xclmgmt256
--device=/dev/dri/renderD128:/dev/dri/renderD128
--device=/dev/dri/renderD129:/dev/dri/renderD129

Enter the following commands in a terminal window to run the application:

1. Setup Environment Variables by script from Xilinx_Base_Runtime

source Xilinx_Base_Runtime/utilities/xilinx_docker_setup.sh

2. Pull the Docker Image from Docker Hub

docker pull xilinx/hubxilinx/logicfruit_aes256_u200:latest

3. Run this single command to run the Docker Image and the AES_APP

docker run –rm -v $(pwd)/cred.json:/cred.json -v bin_test.bin:/AES/bin_test.bin $XILINX_DOCKER_
DEVICES --shm-size=64Ghubxilinx/logicfruit_aes256_u200:latest

--rm : Automatically remove the container when it exits.

-v /(Absolute path from the host machine)/cred.json:/cred.json� - Map local cred.json dir : container
(“/”) directory.

-v /(PATH of the file on which AES have to done)/FILENAME:/AES/(FILENAME) -� Map the local dir :
container dir for the input data file.

for eg my file is bin.test.bin -v /home/logic-fruit/bin.test:/bin.test,bin

$XILINX_DOCKER_DEVICES - Environment variable set by the host setup script

In the $XILINX_DOCKER_DEVICES environment variable, list down the device's information that is
present on the host machine out to the docker container so that our docker container knows on
which device we need to run.

ii. Host Application Details

This is a list of packages that are required to install.

XRT

Vim

g++

xcl2.hpp (very important header fill for the Opencl)

ocl-icd-libopencl1

lsb-release

Technologies AES 256 IP on Xilinx App Store Page No #22

Application Execution

Description of the Command Arguments

Technologies AES 256 IP on Xilinx App Store Page No #23

Dkms

udev

udev:i386

python3

ocl-icd-opencl-dev

uuid-dev

libboost-filesystem1.65.1

libboost-program-options1.65.1

libboost-system1.65.1

libc6

libgcc1

libncurses5

libprotobuf10

libssl1.1

libstdc++6

libtinfo5

libudev1

libuuid1

libyaml-0-2

ocl-icd-libopencl1

ocl-icd-libopencl1

nvidia-libopencl1-340

Environment setup
source /opt/xilinx/xrt/setup.sh

This will set up the environment variables required for building the host code

Technologies AES 256 IP on Xilinx App Store Page No #24

Source Code Structure
We have a single folder that contains our source code (main.cpp), Makefile for the compilation, and
giving out the executable and the required xcl2.hpp header file. We don’t have a modular code in this
application.

Logic Implementation
The whole host code is written in C++.

1. The host and kernel code is compiled separately to create separate executable files: the host pro
gram executable (APP) and the FPGA binary (.xclbin). When the host application runs, it must load
the .xclbin file

2. We provide the Kernel binary (xclbin) file through the command line argument so it is captured
into char* argv[1] and used by the host applications.

3. Then we initialize 2 vectors to store the data and to get the data back from the FPGA after
encryption.

4. Then our host application needs to identify a platform composed of one or more Xilinx devices.

5. After the Xilinx platform is found the application needs to identify the corresponding Xilinx
devices.

6. Then we create a context that contains a Xilinx Device that can communicate with the host ma
chine.

7. Then we create a command queue for each device. This command queue is a Single out-of-order
command queue which means multiple kernel executions can be requested through the same
command queue. XRT dispatches kernels as soon as possible, in any order, allowing concurrent
kernel execution on the FPGA.

8. Host application reads the data from the kernel binary file (xclbin) provided in the char* argv[1].
And save the data into a character pointer.

9. We take the device handle which is obtained by opening a device. We can pass this device handle to
refer to the opened devices in all future interaction with XRT. Function used – (“xclDeviceHandle
xclOpen(unsigned deviceIndex, const char *logFileName, xclVerbosityLevel level) “).
10DRM Sessions starts.

10. DRM Sessions starts.

11. After setting up the runtime environment, such as identifying devices, creating the context, com
mand queue, and program, the host application should identify the kernels that will execute on
the device, and set up the kernel arguments.

12. Then we should access the kernels contained within the .xclbin file (the "program"), identify a
kernel in the program loaded into the FPGA that can be run by the host application.

13. Then three kernels are made: kernel_input, kernel_adder, kernel_output respectively.

14. We set up the kernel arguments as memory buffer arguments that are used for large data
transfer. The value is a pointer to a memory object created with the context associated with the
program and kernel objects and can be used as inputs to, or outputs from the kernel.

Technologies AES 256 IP on Xilinx App Store Page No #25

15. Then we make the two buffers buffer_input and buffer_output as the interactions between the
host program and hardware kernels rely on these buffers, transferring data to and from the

 memory in the device.

16. We need to set up kernel arguments as early as possible as the XRT will error out if we try to mi
grate the buffer before XRT knows where to put it on the device. Therefore, set the kernel argu
ments before performing any enqueue operation on any buffer.

17. Then we write data from the host memory to the buffer_input using the enqueueWriteBuffer, this
helps to enable the software pipelining from the host machine to the device buffer.Function used
- (“cl_int clEnqueueWriteBuffer (cl_command_queue command_queue,cl_mem buffer,cl_
bool blocking_write,size_t offset,size_t cb,const void *ptr,cl_uint num_events_in_wait_list,
const cl_event *event_wait_list,cl_event *event)”).

18. RTL Kernel is executed only one time and works on the entire range of the data, the parallelism is
achieved on the FPGA inside the kernel hardware. If properly coded, the kernel is capable of
achieving parallelism by various techniques such as instruction-level parallelism (loop pipeline)
and function-level parallelism (dataflow). This happens symmetrically.

19. XRT schedules the workload, or the data passed through OpenCL buffers from the kernel argu
ments, and schedules the kernel tasks to run on the accelerator on the Xilinx FPGA.

20. FPGA then performs the encryption on the data and copies it to the buffer_output.

21. Then we read the data from the buffer_output and copy it to the localhost machine using the en
queueReadBuffer, this helps to enable the software pipelining from the host machine to the

 device buffer. Function used - (“cl_int clEnqueueReadBuffer (cl_command_queue com
 mand_queue,cl_mem buffer,cl_bool blocking_read,size_t offset,size_t cb, void *ptr,cl_uint
 num_events_in_wait_list,const cl_event *event_wait_list,cl_event *event)”).

22. We use the Clfinish() function which is explicitly used to block the host execution until the kernel
execution is finished. This is necessary otherwise the host can attempt to read back from the
FPGA buffer too early and may read garbage data.

23. DRM session ends.

24. The final data (Encrypted data) is copied to a file where the user can view it.

Key Steps
Setting Up the Runtime Environment.

1. Getting Platforms.

2. Getting Devices.

3. DRM starts.

4. Setting Up Kernels.

5. Buffer Creation and Data Transfer.

6. Setting Kernel Arguments.

7. Kernel Execution.

8. Event Synchronization.

9. DRM stops.

Technologies AES 256 IP on Xilinx App Store Page No #26

Flow chart

Data Flow

Integration with DRM

1. Vectors are initialized.

2. Data from the input file are read and written in those vectors.

3. Two buffers named input_buffer and output_buffer for input and output are made respectively.

4. The data is copied from the host memory to the buffer using the function

5. Write Function = (“cl_int cl::CommandQueue::enqueueWriteBuffer(const Buffer& buffer, cl_bool
blocking_write, ::size_t offset, ::size_t size, const void * ptr, const VECTOR_CLASS<Event> *
events = NULL, Event * event = NULL)”).

6. Using this buffer_input FPGA(alveo u200) read the data from the buffer and performs AES en
cryption on it. Then FPGA writes the encrypted data to the buffer_output.

7. FPGA reads the data from the buffer_output and copies the data to host memory.

8. Read Function = (“cl_int cl::CommandQueue::enqueueReadBuffer(const Buffer& buffer, cl_bool
blocking_read, ::size_t offset, ::size_t size, const void * ptr, const VECTOR_CLASS<Event> *
events = NULL,Event * event = NULL)”).

9. Host memory data is then copied to a file for the user to see the encrypted output.

1. The DRM in our source code (main.cpp) checks for files (“ conf.json ”) and (“ cred.json ”).

2. If both these files are successfully acquired by the DRM, then DRM will the activate function (
“void activate(const bool& resume_session_request = false);”) to start the session, this
function activate/unlocks the hardware by unlocking the protected IPs in the FPGA and opening a
DRM session. If a session is still pending the behavior depends on the "resume_session_request"
argument. If true the session is reused. Otherwise, the session is closed and a new session is
created. This function will start a thread that keeps the hardware unlocked by automatically up
dating the license when necessary. When this function returns and the license is valid, the
protected IPs are guaranteed to be unlocked.

3. After successfully running the AES256 application, DRM will call the deactivate function (“void
deactivate(const bool& pause_session_request = false);”) to close the session . This function de
activates/locks the hardware back and closes the session. In this case, the session is kept open for
later use. This function will join the thread keeping the hardware unlocked. When the function re
turns, the hardware is guaranteed to be locked.

Technologies AES 256 IP on Xilinx App Store Page No #27

Compilation/build Steps

Dependency List

Environment setup

Development Steps

Docker Container Details

docker

libc6

libglib2.0-0

Libx11-6

1. git clone https://github.com/Xilinx/Xilinx_Base_Runtime.git

2. sudo ~/Xilinx_Base_Runtime/utilities/./docker_install.sh

3. source ~/Xilinx_Base_Runtime/utilities/xilinx_docker_setup.sh

1. We have made a Dockerfile which is simply a text-based script of instructions that is used to create
a container image.

2. We have started FROM the image Xilinx/xilinx_runtime_base:alveo-2020.2-Ubuntu-18.04
 image. But, since we didn’t have that on our machine, that image needed to be downloaded.

3. Then we copy files that we require to build the application like copy host code (main.cpp), Make
 file, and xcl2.hpp to docker containers.

4. We install the important packages required to run our application like g++, curl, etc to fulfill all
the dependencies for making the (APP).

5. Then we build the application as we copy the host code (main.cpp) and Makefile to the container
 and compile it by running the make all command which gives us the executable file (APP).

6. Then we build the container images in which we will install the important packages required to
run our application.

7. We copy the xclbin file (FPGA binary file) which is required to run, the APP is copied from the
 host machine to the docker container.

8. Then in the Dockerfile we set up some Environment Variables to run the app smoothly.

9. Finally, our Docker container will be able to run the following command to start the application.
When the host application runs, it must load the xclbin file.

For Example :-

<. /app /xclbin/ABC.xclbin >

We compile our host code (main.cpp) with a Makefile by running the make command. Makefile provides
the important flag to compile the host application and build the executable file (APP).

There are some packages we need to be installed.

https://github.com/Xilinx/Xilinx_Base_Runtime.git

Technologies AES 256 IP on Xilinx App Store Page No #28

Integration with host application:

Container building steps

Publishing/Hosting

1. In order to build the container we require Dockerfile which is simply a text based script of
 instructions that is used to create a container image.

2. Our DockerFile is a multi-stage build.

3. In Stage 1 of Dockerfile we build the application as we copy the host code (main.cpp) and Makefile
 to the container and compile it by running the make all command which gives us an executable
 file (APP).

4. In Stage 2 of Dockerfile, we build the container image as we copy the xclbin, conf.json, and the APP
 from the previous stage.

5. By running the “docker run” command the docker container will automatically start and execute

 the command to run the applications.

6. < ./app /xclbin/abc.xclbin >

1.Go to the docker hub.

2.Setup your Username and password.

3.Create a repository by giving the name and the description and setting its visibility mode.

4.We need to build the docker image from the docker file and a “context”. Context is a set of the files

located in the specified PATH so that if any changes are made it is updated to the new image.

For eg :- docker build -t hubxilinx/logicfruit_aes256_u200:latest .

We have made a multi-stage Dockerfile in which artifacts can be reused from one stage to another stage,
leaving behind everything we don’t want in our final images. This helps us in increasing the efficiency of
the Dockerfile and gives us the benefits of easy to read, easy to maintain and it slims down by reducing
some layers in the Dockerfile and reducing the complexity.

To publish a docker image we need to follow the following steps:

Technologies AES 256 IP on Xilinx App Store Page No #29

Application Usage

Runtime Environment

5. The final step is to share the image on to the docker hub as it is ready for deployment.
 For eg :- docker push hubxilinx/logicfruit_aes256_u200:latest

Useful Xilinx commands:

The application is containerized and can be easily run in a few minutes on the Alveo card U200.

Prerequisite

For Alveo U200, Xilinx FPGA Alveo U200 (shell xilinx_u200_xdma_201830_2) card is installed
correctly. (default device id is 0)

Docker (with sudo access): When deployed in Nimbix, PushToCompute flow will deploy the
application in an instance with ubuntu18.04, U200, and XRT 2020.2.

This application supports the Xilinx FPGA Alveo U200 card at this moment. To run this application on
users machines, please make sure:

Component Requirement

System Memory

For deployment installations, a minimum of 16 GB
plus application memory requirements is required.

For development installations, a minimum
of 64 GB of device memory is required,

but 80 GB is recommended.

Internet Connection Required for downloading drivers and utilities.

Platform Alveo U200

Hard disk space Satisfy the minimum system requirements for
your operating system.

PCI Express® 3.0-compatible with
one dual-width x16 slot

225W via PCI Express Slot connection and 8-pin
PCI Express Auxiliary Power cable.

Motherboard

System Power Supply

Linux, 64-bit:
• Ubuntu 16.04, 18.04 • CentOS 7.4, 7.5, 7.6

• RHEL 7.4, 7.5, 7.6
Operating System

Command To Check

cat etc/os-release

uname -r

Technologies AES 256 IP on Xilinx App Store Page No #30

Successful Build

iii. Check whether the FPGA is connected and in a working state:

Commands Usage

xbutil reset To reset the PL on FPGA.

List the card available on the devices , the XRT
information & the system configurations

This command will check the proper functioning
of the FPGA on your host machine and even

will flash the FPGA card on the host machine

xbutil scan

xbutil validate

This command will show all the important information
about the FPGA card such as card temperature,

card memory, power supplied to the card.
xbutil query

vitis -version

sudo lspci -vd 10ee:

sudo /opt/xilinx/xrt/bin/unwrapped/xbmgmt flash --scan

sudo /opt/xilinx/xrt/bin/unwrapped/xbmgmt flash --scan --verbose

docker version

source /opt/xilinx/xrt/setup.sh

The successful build of an application is similar to the below message screen.

Chapter 7: Troubleshooting

Technologies AES 256 IP on Xilinx App Store Page No #31

Use Vitis Analyzer tool to visualize and navigate reports

[Error] Unable to find DRM controller registers

Use command: vitis_analyzer <path_to>/xclbin/<file_name>.xclbin.link_summary

Some of the analyzer reports are attached here for reference.

Could not access DRM controller registers.

Technologies AES 256 IP on Xilinx App Store Page No #32

[Error] Unable to find DRM controller registers

The error is due to the mismatch between the initial offset memory page of the DRM controller registers
and the one defined in the host application <main.cpp>. The Vitis platform generates this address unique
to the initial build for the application or if the HDK package is updated/changed. It remains the same if set
once, But it is advised to check if the error persists.

Open the file <file_name_hdk_version_vitis_version_xdma_platformu>.xclbin.info
i.e, rtl_adder_pipes_hdk_4.1.0_vitis_2020.1_u200_xdma_201830_2.xclbin.info located in the output
directory xclbin.

The file contains information about the xclbin generated and the Hardware Platform (Shell). Traverse to
the kernel instance section, locate the kernel instance for the DRM controller IP, use the base address from
it, and replace it in the host app <main.cpp> for DRM_BASE_ADDRESS.

Reference links

https://tech.accelize.com/documentation/stable/drm_troubleshooting.html

[Error] Path is not a valid file: cred.json
The error is due to the invalid license file path defined in the conf.json file. Both files are located in the
directory /app. Update the correct file path of the cred.json in the file conf.json.

https://tech.accelize.com/documentation/stable/drm_troubleshooting.html

Technologies AES 256 IP on Xilinx App Store Page No #33

[Error] Metering web service error 400

[Error] Metering web service error 400: User account

has no entitlement

The collection of Activators from the license request does not match the expected configuration.

The error is due to the mismatch between the DRM Activators integrated with the app and the Accelize
web portal. Please check and update the DRM HDK package version integrated with the application and the
webserver.

The error is due to the unavailability of license entitlement to the user. Also, it might be that the user is
entitled to use the app but hasn’t subscribed to the plan or the subscription has expired. Please check and
update your subscription plans for the app in your Accelize account.

Reference Links:

https://tech.accelize.com/documentation/stable/drm_trouble-
shooting.html#if-you-get-this-error-message-drm-ws-request-failed

https://tech.accelize.com/documentation/stable/drm_trouble-shooting.html#if-you-get-this-error-message-drm-ws-request-failed

Technologies AES 256 IP on Xilinx App Store Page No #34

[XRT] Error: CU was deadlocked? Hardware is not stable
The error is due to the CU unit or Programmable Logic (PL) on the Alveo board/hardware being unstable or
hang. Use the XRT command to reset the PL surface on the board. Use the below command

xbutil reset

If the error still persists, try a cold reboot of the host PC. Also, check the XRT version installed. Update it if
it is corrupt or outdated.

Reference Links:

https://forums.xilinx.com/t5/Alveo-Accelerator-Cards/-
First-Alveo-U280-kernel-run-XRT-ERROR-No-devices-found/td-p/1047055

There are various other xbutil commands to help in runtime and debug.

https://www.xilinx.com/html_docs/xilinx2019_1/sdaccel_doc/xi-
linx-board-swiss-army-knife-utility-ufa1504034339078.html

https://forums.xilinx.com/t5/Alveo-Accelerator-Cards/-
First-Alveo-U280-kernel-run-XRT-ERROR-No-devices-found/td-p/1047055
https://www.xilinx.com/html_docs/xilinx2019_1/sdaccel_doc/xi-linx-board-swiss-army-knife-utility-ufa1504034339078.html

Technologies AES 256 IP on Xilinx App Store Page No #35

[XRT] Warning: unaligned host pointer ‘0x7fffxxxxxx’

detected, this lead to extra memcpy

The error is due to a clock frequency mismatch between the two ports defined. Check the operating
frequency in the makefile and the kernel operating frequency defined. Also, do check the tickle scripts
defined in the src folder for the clock and reset signals declaration integration between the DRM controller
IP and the kernels using the port signals accordingly.

Reference Links:

https://forums.xilinx.com/t5/Processor-System-Design-and-AX-
I/BD-41-237-Bus-Interface-property-FREQ-HZ-does-not-match/td-p/775283

https://www.xilinx.com/support/answers/56610.html

https://forums.aws.amazon.com/thread.jspa?threadID=271665

To remove the alignment warning, you need to use the "aligned_allocator" that Xilinx provides in their lib
XCL2. These are some of the header files and their functions we require to use in order to remove these
warnings. These warnings will not have any effect on the functionality of the application yet it is better to
remove if any.

Reference Links:

https://developer.xilinx.com/en/articles/example-2-aligned-memory-allocation.html

https://forums.xilinx.com/t5/Vitis-Acceleration-SDAccel-SD-
SoC/memory-alignment-when-allocating-emmory-in-SDAccel/td-p/887593

[Error] Bus Interface property FREQ_HZ does not match

between <port_1> and <port_2>

https://forums.xilinx.com/t5/Processor-System-Design-and-AX-
I/BD-41-237-Bus-Interface-property-FREQ-HZ-does-not-match/td-p/775283
https://www.xilinx.com/support/answers/56610.html
https://forums.aws.amazon.com/thread.jspa?threadID=271665
https://developer.xilinx.com/en/articles/example-2-aligned-memory-allocation.html
https://forums.xilinx.com/t5/Vitis-Acceleration-SDAccel-SD-
SoC/memory-alignment-when-allocating-emmory-in-SDAccel/td-p/887593

Technologies AES 256 IP on Xilinx App Store Page No #36

[XRT] Error: Cannot add a component to the argument

Check md5sum value of the <file_name>.xclibin

The error is due to the unsatisfied properties of the vitis kernel requirement. Refer to the web page and
follow as described. There might be a mismatch between register offset address, ports, or signal usage.

The kernel ports, signals, and arguments are defined in the RTL and the XML files for each kernel. All the
definitions and usage should match for a successful build.

Reference Links:

https://www.xilinx.com/html_docs/xilinx2020_2/vitis_doc/devrtlkernel.html

https://www.xilinx.com/html_docs/xilinx2020_2/vitis_-
doc/myl1532064542647.html#:~:text=An%20XML%20kernel%20description%20file,runtime%20and%
20Vitis%20tool%20flows.

https://www.xilinx.com/html_docs/xilinx2020_2/vitis_doc/rtl_kernel_wizard.html

Because nearly every modification to a file will cause its MD5 hash to change, md5sum is used to verify the
integrity of files. Md5sum is most typically used to ensure that a file has not been altered due to a failed file
transfer, a disk malfunction, or non-malicious tinkering. Check md5sum using the below command:

https://www.xilinx.com/html_docs/xilinx2020_2/vitis_doc/devrtlkernel.html
https://www.xilinx.com/html_docs/xilinx2020_2/vitis_-%0Adoc/myl1532064542647.html#:%7E:text=An%20XML%20kernel%20description%20%EF%AC%81le,runtime%20and%20Vitis%20tool%20%EF%AC%82ows.
https://www.xilinx.com/html_docs/xilinx2020_2/vitis_doc/rtl_kernel_wizard.html

Technologies AES 256 IP on Xilinx App Store Page No #37

Determine Linux release:

The first step is you can see which devices are present

on your host

md5sum filename

sudo lspci -vd 10ee:

Use the cat /etc/*release command to determine the Linux release

This should be the required output if not please do reinstall check the Troubleshooting page.

Technologies AES 256 IP on Xilinx App Store Page No #38

Flash the card with a deployment platform:

Unload/reload XRT drivers:
Use modprobe -r to remove the drivers as shown below
sudo modprobe -r xocl
sudo modprobe -r xclmgmt

Use modprobe to reload the drivers as shown below
sudo modprobe xclmgmtsudo modprobe xocl
Order matters for both of these commands. xocl depends on xclmgmt.

We can review the shell capabilities with by command sudo /opt/Xilinx/xrt/bin/xbmgmt flash –scan as
shown below

Technologies AES 256 IP on Xilinx App Store Page No #39

Run sudo xbmgmt flash --scan

If Flashable partitions installed in the system: (None) is the output please install the latest
packages from the Alveo landing page for your installed card(s)

Follow the process for Card install to install the platforms on the machine.

Run sudo xbmgmt flash --update --shell <xilinx_uxx> to flash the platform onto the card.
This command should be provided during platform installation, shown below:

Once the card is up and running in the system, a deployment platform will need to be flashed onto the card
before xbutil validate passes and applications can be run. To flash the card with a deployment platform
follow the below steps:

Partition package installed successfully.

Please flash card manually by running below command:

sudo /opt/xilinx/xrt/bin/xbmgmt flash --update --shell xilinx_u200_xdma_201830_2

~]$ sudo xbmgmt flash --update --shell xilinx_u200_xdma_201830_2

Status: shell needs updating

Current shell: xilinx_u200_GOLDEN_9

Shell to be flashed: xilinx_u200_xdma_201830_2

Are you sure you wish to proceed? [y/n]: y

Updating shell on card[0000:05:00.0]

INFO: ***Found 353 ELA Records

Enabled bitstream guard. Bitstream will not be loaded until flashing is finished.

Preparing flash chip 0

Erasing flash.................

Programming flash.................

Cleared the bitstream guard. Bitstream now active.

Successfully flashed Card[0000:05:00.0]

1 Card(s) flashed successfully.

Cold reboot machine to load the new image on card(s).

Technologies AES 256 IP on Xilinx App Store Page No #40

Reverting the card to factory image:
The Alveo card can be reverted to the factory image, also known as golden. This requires that XRT release

2019.2 or later is installed on the same system as the Alveo accelerator card. The steps to revert the card

using this method are listed below.

 1.1. Open a terminal window.

 1.2. Run the following command, where card_bdf is the BDF of the card to revert to golden.

$ sudo xbmgmt flash --factory_reset --card <card_bdf>

 1.3.Enter y to continue. The following message is displayed on completion.

Shell is reset successfully

:~> sudo xbmgmt flash --update

 Status: SC needs updating

 Current SC: 5.0.20

 SC to be flashed: 5.0.27

 Updating SC firmware on card[0000:05:00.0]

 Stopping user function...

 INFO: found 4 sections

 INFO: Loading new firmware on SC

 Successfully flashed Card[0000:05:00.0]

 1 Card(s) flashed successfully.

Cold boot the server

Run sudo xbmgmt flash --scan

Now platform installed in host and card are the same

If this is a DFX-2RP platform, go to Programming DFX-2RP shell partitions

If there is a different number in the SC= line between the FPGA and the system for the platform
on the card, update the SC firmware, example below:

Technologies AES 256 IP on Xilinx App Store Page No #41

In this output, under the Flashable partition running on an FPGA, note GOLDEN in the name. This indi-

cates that the card has successfully been reverted to the factory image.

IMPORTANT! If the GOLDEN_2 image is running on the FPGA, carefully review the design advisory for

Alveo data center Accelerator card golden corruption, found in AR 71915. Complete the repair instructions

associated with the Xilinx Answer prior to proceeding.

For more information you can log on to this url :

https://xilinx.github.io/Alveo-Cards/master/debugging/READhME.html

Cold reboot machine to load new shell on card

1.4.Cold boot the system so the card FPGA uses the new image.

1.5.Confirm the card has been reverted to factory image by running the following command.

$ sudo xbmgmt flash --scan
1.6.An output similar to the following is displayed.

Card [0000:65:00.0]

Card type: uxx

Flash type: SPI

Flashable partition running on FPGA:

xilinx_uxx_GOLDEN_x,[SC=x.x]

Flashable partitions installed in system: (None)

https://xilinx.github.io/Alveo-Cards/master/debugging/READhME.html

Technologies

Contact Us

Gurugram
(Headquarter)

United States
(Sales Office)

806, 8th Floor
BPTP Park Centra Sector–30,

NH–8 Gurgaon – 122001
Haryana (India)

info@logic-fruit.com

+91-0124 4643950

Bengaluru
(R&D House)

Sy. No 118, 3rd Floor,
Gayathri Lakefront,

Outer Ring Road, Hebbal,
Bangalore - 560 024

sales@logic-fruit.com

+91 80-69019700/01

Logic Fruit Technologies
INC 691 S Milpitas Blvd Ste

217 (Room 9) Milpitas
CA 95035

info@logic-fruit.com

+1-408 338 9743

*This document is the intellectual property of Logic Fruit Technologies . Any plagiarism or misuse is punishable according to Indian Laws

Thank You!
Does anyone have any questions?

https://www.logic-fruit.com/contact-us/

