
USB Host
Whitepaper

By:
 Abhinav saxena
 R&D Engineer

Technologies

Technologies USB Host Page No #2

Abstract
Implementing an embedded system with a USB host support can be a challenging task. This paper will

provide software guidelines for such integrated solutions, and the factors to be considered/taken care

while building these type of systems.

Index

Introduction. 3

Motivation
What is USB Host?

Description
Class Codes

USB Host Model
Types of Host Controller
Controllers having this feature

Functional Description. 6

USB Host Flow Control
Implementation

Types of Packet
Packet format
Type of data transfer
Token Packet Transactions
Setup Packet

Example Atmel-SAMBA5D36 Hos Controller. 14

Block Diagram
USB Selection
Implementation flow
Results
Challenges faced
Solutions/Observations/Findings

References. 16

Technologies Page No #3

Motivation
USB aims to simplify things by extending the trend of "user friendliness" to the hardware level. To the

average computer user, it is a system where you can simply plug a device into any available socket and that

device will instantly be available for use by the computer. Up to 127 devices can be connected, and since it

is a high speed system supporting up to 12 Megabits per second, it can accommodate the needs of a wide

variety of peripherals. Other advantages include the ability to safely disconnect and reconnect items

without switching off the computer, and the ability to use a USB device on any computer supporting the

USB system.

Introduction

Description
The USB is based on a so-called 'tiered star topology' in which there is a single host controller and up to

127 'slave' devices. The host controller is connected to a hub, integrated within the PC, which allows a

number of attachment points (often loosely referred to as ports). A further hub may be plugged into each

of these attachment points, and so on. However there are limitations on this expansion.

As stated above a maximum of 127 devices (including hubs) may be connected. This is because the address

field in a packet is 7 bits long, and the address 0 cannot be used as it has special significance. (In most

systems the bus would be running out of bandwidth, or other resources, long before the 127 devices was

reached.)

A device can be plugged into a hub, and that hub can be plugged into another hub and so on. However the

maximum number of tiers permitted is six.

The length of any cable is limited to 5 metres. This limitation is expressed in the specification in terms of

cable delays etc, but 5 metres can be taken as the practical consequence of the specification. This means

that a device cannot be further than 30 metres from the PC, and even to achieve that will involve 5 external

hubs, of which at least 2 will need to be self-powered.

So the USB is intended as a bus for devices near to the PC. For applications requiring distance from the PC,

another form of connection is needed, such as Ethernet.

What is USB Host?

USB Host

Technologies Page No #4

Class Codes

USB Host Model
Embedded host for a USB flash drive is a complex combination of hardware and software that works

together as a system.

Base
Class

Descriptor
Usage Description

00h

01h

Device

Interface

Use class information in the Interface Descriptors

Audio

02h Both Communications and CDC Control

03h Interface HID (Human Interface Device)

05h Interface Physical

06h Interface Image

07h Interface Printer

08h Interface Mass Storage

09h Device Hub

0Ah Interface CDC-Data

0Bh Interface Smart Card

0Dh Interface Content Security

0Eh Interface Video

0Fh Interface Personal Healthcare

10h Interface Audio/Video Devices

11h Device Billboard Device Class

12h Interface USB Type-C Bridge Class

DCh Both Diagnostic Device

E0h Interface Wireless Controller

EFh Both Miscellaneous

FEh Interface Application Specific

FFh Both Vendor Specific

USB Host

Technologies Page No #5

Existing controllers having USB Host feature
SUPPLIER FAMILY ARCHITECTURE USB OTG OR HOST SUPPORT

NTI Tiva ARM FS/HS Device & OTG TI Hercules ARM LS/FS OHCI, FS Device TI Sitara ARM FS/HS Host &

Device TI OMAP ARM FS/HS Host & Device Freescale Kinetis ARM FS/HS Host & Device Freescale Vybrid

ARM FS/HS Host & Device Freescale i.MX ARM FS/HS Host & Device Atmel AVR AVR FS OTG & Device

Atmel SAM ARM FS Host & Device NXP LPC ARM FS/HS Host & Device Microchip PIC PIC FS/HS Host &

Device.

Types of Host Controller
There are three commonly encountered types of USB host controller, each with its own history and

characteristics.

OHCI (Open Host Controller Interface)

Compaq, Microsoft and National Semiconductors cooperated to produce this standard host controller

specification for USB 1.0 and USB 1.1. It is a more hardware oriented version than UHCI. Low speed and full

speed.

UHCI (Universal Host Controller Interface)

Intel's more software-oriented version of a controller for USB 1.0 and USB 1.1. Requires a license from

Intel. Low speed and full speed.

EHCI (Extended Host Controller Interface)

When USB 2.0 appeared with its new high speed functionality, the USB-IF insisted on there being a single

host controller specification, to keep device development costs down. The EHCI handles high speed

transfers, and hands off low and full speed transfers to either OHCI or UHCI companion controllers.

A key component of this system is software that we call ‘middleware.’ Middleware is a collection of

software consisting of drivers, protocol stacks and class drivers that make it possible to communicate with

the USB devices via the USB host controller.

USB Host

Technologies Page No #6

USB Host Flow Control
When USB device is plugged in, the host becomes aware (because of the pullup resistor on one data

line), that a device has been plugged in.

The host now signals a USB Reset to the device, in order that it should start in a known state at the

end of the reset. In this state the device responds to the default address 0. Until the device has been

reset the host prevents data from being sent downstream from the port. It will only reset one device

at a time, so there is no danger of two devices responding to address 0.

The host will now send a request to endpoint 0 of device address 0 to find out its maximum packet

size. It can discover this by using the Get Descriptor (Device) command. This request is one

which the device must respond to even on address 0.

Typically (i.e. with Windows) the host will now reset the device again. It then sends a Set Address

request, with a unique address to the device at address 0. After the request is completed, the

device assumes the new address. (And at this point the host is now free to reset other recently

plugged-in devices.)

Typically the host will now begin to quiz the device for as many details as it feels it needs. Some

requests involved here are:

Get Device Descriptor

Get Configuration Descriptor

Get String Descriptor

At the moment the device is in an addressed but unconfigured state, and is only allowed to respond

to standard requests.

Once the host feels it has a clear enough picture of what the device is, it will load a suitable device

driver.

The device driver will then select a configuration for the device, by sending a Set Configuration

request to the device.

The device is now in the configured state, and can start working as the device it was designed to be.

From now on it may respond to device specific requests, in addition to the standard requests

which it must continue to support.

Functional Description

USB Host

Technologies Page No #7

We can now see that there is a set of requests which a device must respond to, and need to look at the

detailed means by which the requests are conveyed.

The only transfer type available before the device has been configured is the Control Transfer. The

only endpoint available at this time is the bidirectional Endpoint 0.

When a device is attached to the USB system, it gets assigned a number called its address. The

address is uniquely used by that device while it is connected and, unlike the traditional system, this

number is likely to be different to the address given to that device the last time it was used. Each

device also contains a number of endpoints, which are a collection of sources and destinations

for communications between the host and the device.

The combination of the address, endpoint number and direction are what is used by the host and

software to determine along which pipe data is traveling.

USB, sends a block of data called an I/O Request Packet (IRP) to the appropriate pipe, and the

software is later notified when this request is completed successfully or terminated by error.

Data transmission in the bus occurs in a serial form. Bytes of data are broken up and sent along

the bus one bit at a time, with the least significant bit first.

Implementation

A logical data connection between the host and a particular endpoint, in which we ignore the lower level

mechanisms for actually achieving the data transfers.

Pipe

Each USB device has a number of endpoints. Each endpoint is a source or sink of data. A device can

have up to 16 OUT and 16 IN endpoints.

OUT always means from host to device.

IN always means from device to host.

Endpoint 0 is a special case which is a combination of endpoint 0 OUT and endpoint 0 IN, and is used

for controlling the device.

Endpoints

USB Host

Technologies Page No #8

Token Packets : These are used to query the device and are issued by the host. They consist of PID,

address and endpoint fields, along with a 5 bit CRC check.

Start-of-Frame Packets : The USB host controls the processing of data in 1ms units called frames.

During each frame, it examines what requests are outstanding and allocates each pipe bandwidth

depending on its requirements and type of transfer that it uses. Each frame is marked by a Start of

Frame (SOF) packet, consisting of an appropriate PID, an 11-bit counter and a 5 bit CRC. The counter

is incremented once per frame, allowing devices to determine whether they missed a frame due

to an error and adjust their timing appropriately.

At high speed the 1 ms frame is divided into 8 microframes of 125 us. A SOF is sent at the start

of each of these 8 microframes, each having the same frame number, which then increments

every 1 ms frame.

Data Packets : Consists of all of the above field types, and is protected by a 16 bit CRC

DATA0 and DATA1 PIDs are used in Low and Full speed links as part of an error-checking

system. When used, all data packets on a particular endpoint use an alternating DATA0 /

DATA1 so that the endpoint knows if a received packet is the one it is expecting. If it is not it

will still acknowledge (ACK) the packet as it is correctly received, but will then discard the

data, assuming that it has been re-sent because the host missed seeing the ACK the first time

it sent the data packet.

DATA2 and MDATA are only used for high speed links.

Handshake Packets : These are used for returning the status of data transfers and consist only of a

PID. These come in three types and are named ACK (ACKnowledgement of receipt with no errors),

NAK (the function is not ready to communicate data) and STALL (function is busy or some other

error occurred)

ACK : Receiver acknowledges receiving error free packet.

NAK : Receiving device cannot accept data or transmitting device cannot send data.

STALL : Endpoint is halted, or control pipe request is not supported.

NYET : No response yet from receiver (high speed only)

To cope with the various communications that must occur to establish a data flow, there needs to be a

variety of types of packets, and these are as follows:

Types of Packets

An eight bit "SYNC" synchronisation field used by inputs to correct their timing for accepting data.

Part of this field is a special symbol used to mark the start of a packet.

Packet Format

USB Host

Technologies Page No #9

The 8 bit Packet Identifier (PID) which uses 4 bits to determine the type, and hence format, of the

packet data. The remaining 4 bits are a 1's complement of this, acting as check bits. Part of this field

determines which of the four groups (token, data, handshake, and special) that the packet belongs

to, and also specifies an input, output or setup instruction.

An address field which gives the address ofthe function on the end of the pipe to be used.

The 4 bit endpoint field, giving the appropriate endpoint which sends or receives the packet.

A data field consisting of 0-1023 bytes.

PID Type PID Name PID<3:0>*

Token

Data

OUT
IN
SOF
SETUP

0001b
1001b
0101b
1101b

ACK
NAK
STALL
NYET

0010b
1010b
1110b
0110b

DATA0
DATA1
DATA2
MDATA

0011b
1011b
0111b
1111b

PRE
ERR
SPLIT
PING
Reserved

1100b
1100b
1000b
0100b
0000b

Handshake

Special

Sync (8)

Figure: A typical dat packet. Numbers represent size of field in bits, unless
otherwise indicated.

PID (8) Address Endpoint (4) Data (0-1023 bytes)

USB Host

Technologies Page No #10

Control Transfers : These differ from the other types in that they are intended for use in

configuring, controlling, and checking the status of a USB device. A request is sent to the device from

the host, and appropriate data transfers follow in the appropriate pipes. At some later stage, a status

indicator is returned to the host. The pipe used for this type of data may be bidirectional, but uses

the same numbered endpoint for each direction. In addition, a device only handles one control

request at a time, with the host withholding outstanding requests until a status is returned on the

one in progress. For example, the Default Control Pipe uses Control Transfers and accomplishes

such tasks as initializing the device, and telling the host of the requirements of each of its endpoints.

This type of pipe might also be used to control the operation of other pipes.

Isochronous Transfers : These involve data whose accuracy is not critical and which is sent at a rate

corresponding to some timing mechanism. For example, 44100KHz audio fits into this category

since it doesn't have to be perfectly accurate and every 44100 samples indicates one second of audio.

USB provides a special type of transfer for this data, giving it preference to guarantee a constant

transmission rate with the required bandwidth. To ensure that the USB has enough time to handle

the maximum data flow (1023 bytes) in each frame, a check is made during the initial configuration

and the pipes will only be configured if this check is successful. This transfer method uses

unidirectional pipes with no error handling procedures. Even though an error may be indicated in

the status reply to a request, the pipe will not be halted and it is up to the software to decide what to

do.

Interrupt Transfers : These are used for small, infrequent transfers which require priority over

other requests. As with Isochronous transfers, pipe configuration is granted on whether or not the

system can handle the maximum packet size within the required time, with a further restriction that

stops Interrupt and Isochronous Transfers from using more than 90% of any frame (discussed later)

and stopping other transfers from occurring. The endpoint tells the host during configuration how

often it should be polled for interrupt requests, and upon each polling returns a NAK signal if there is

nothing to send. The use of this type of pipe is in some ways similar in purpose to the IRQ lines of the

traditional peripheral system used in computers.

Types of Data Transfers

Host Host

Host ACK handshake

(a) Successful Control Command (b) Unsuccessful Control Command

Figure: Communication sequence for Control transactions

Control Token Control TokenUSB Device USB Device

USB Device

Figure: Communication sequence for Isochronous transactions

Host

Host isochronous data

Token USB Device

USB Device

USB Host

USB Host Flow Control

Technologies Page No #11

Bulk Transfers: As the name suggests, the intended purpose is for transmitting large amounts of

data. This type of transfer gets the lowest priority, so pipes using this method are only allowed to

transmit when there is available bandwidth. This means that a heavily loaded USB may have

relatively slow bulk transfers compared to one with is servicing few devices. This transfer type

would be useful for sending data from devices like digital scanners.

Simple transfers of data called 'Transactions' are built up using packets.

A successful transaction is a sequence of three packets which performs a simple but secure

transfer of data.

For IN and OUT transactions used for isochronous transfers, there are only 2 packets; the

handshake packet on the end is omitted. This is because error-checking is not required.

There are three types of transaction. In each of the illustrations below, the packets from the host are

shaded, and the packets from the device are not.

Host Host

Host Interrupt data

(a) Interrupt Pending (b) No interrupt data waiting

Figure: Communication sequence for Interrupt transactions

Interrupt Token Interrupt TokenUSB Device USB Device

USB Device Host NAK handshake USB Device

Host Host

Host Data or handshake

Figure: Communication sequence for Interrupt transactions

Input Token Output TokenUSB Device USB Device

USB DeviceUSB Device

Host handshake USB Device

Host Data

From Host

TOKEN PACKET DATA PACKET

One OUT Transaction

HANDSHAKE
PACKET

From Device

Payload
Data

D
A
T
A
X

C
R
C
1
6

A
C
K

O
U
T

A
D
D
R

E
N
D
P

C
R
C
5

USB Host

Technologies Page No #12

TOKEN PACKET DATA PACKET

One IN Transaction

HANDSHAKE
PACKET

Payload
Data

D
A
T
A
X

C
R
C
1
6

A
C
K

I
N

A
D
D
R

E
N
D
P

C
R
C
5

TOKEN PACKET DATA PACKET

One SETUP Transaction

HANDSHAKE
PACKET

8 Bytes
SETUP

Data

D
A
T
A
0

C
R
C
1
6

A
C
K

S
E
T
U
P

A
D
D
R

E
N
D
P

C
R
C
5

Setup Packet
The Standard requests are all conveyed using control transfers to endpoint 0. Remember that a
control transfer starts with a SETUP transaction which conveys 8 bytes. These 8 bytes define the
request from the host.

The structure of bmRequestType makes it easy to use it to switch on when our firmware is trying to
interpret the setup request. Essentially, when the SETUP arrives, you need to branch to the handler
for the particular request, so for example bits 6:5 allow you to distinguish the mandatory standard
commands, from any class or vendor commands you may have implemeted for you particular
device.

Switching on bit 7 allows you to deal with IN and OUT direction requests in separate areas of the

code.

USB Host

Technologies Page No #13

FieldOffset Size Value Discription

bmRequestType Bitmap10

D7 Data direction
0 - Host-to-device
1 - Device-to-host
D6:5 Type
0 = Standard
1 = Class
2 = Vendor
3 = Reserved
D4:0 Recipient
0 = Device
1 = Interface
2 = Endpoint
3 = Other
4-31 = Reserved

bRequest

wValue

wIndex

wLength

Value

Value

Index or Offset

Count

Specific Request

Use varies according to request

Use varies according to request

Number of bytes to transfer if
there is a data stage

1

2

4

6

1

2

2

2

bRequestbmRequestType wValue wIndex DatawLength

00000000b
00000001b
00000010b

10000000b

CLEAR_FEATURE
[4]

Feature
Selector

Zero
Interface
Endpoint

Zero None

GET_CONFIGURATION
[4]

Zero Zero One
Configuration

Value

10000000b
GET_DESCRIPTOR

[4]

Descriptor
Type (H) and

Descriptor
Index (L)

Zero or
Language

ID

Descriptor
Length

Descriptor

10000001b
GET_INTERFACE

[4]
Zero Interface One

Alternate
Interface

USB Host

HHSDPA - USB Host Port A High
Speed Data +

HHSDMA - USB Host Port A High
Speed Data -

HHSDPB - USB Host Port B High
Speed Data +

HHSDMB - USB Host Port B High
Speed Data -

HHSDPC - USB Host Port C High
Speed Data +

HHSDMC - USB Host Port C High
Speed Data -

Block Diagram

Example Atmel-SAMBA5D36
Host Controller

Technologies Page No #14

10000000b
10000001b
10000010b

00000000b

GET_STATUS
[4]

Zero
Zero

Interface
Endpoint

Two
Device,

Interface or
Endpoint Status

00000000b
00000001b
00000010b

SET_FEATURE
[4]

Feature
Selector

Zero
Interface
Endpoint

Zero None

SET_ADDRESS
[4]

Device
Address

Zero Zero None

00000001b
SET_INTERFACE

[4]
Alternate
Setting

Interface Zero None

10000010b
SYNCH_FRAME

[4]
Zero Endpoint Two

Frame
Number

Zero Zero None10000000b
SET_CONFIGURATION

[4]
Configuration

Value

10000000b
SET_DESCRIPTOR

[4]

Descriptor
Type (H) and

Descriptor
Index (L)

Zero or
Language

ID

Descriptor
Length

Descriptor

USB Host

Fetches endpoint descriptors and transfer descriptors.

Access to endpoint data from system memory.

Access to the HC communication area.

Write status and retire transfer descriptor.

Technologies Page No #15

Access to the USB host operational registers is achieved through the AHB bus slave interface. The Open HCI

host controller and Enhanced HCI host controller initialize master DMA transfers through the AHB bus

master interface as follows:

USB Selection

Implementation flow

TBD

Results

TBD

Other
Transceivers

Other ports

DMA

HS USB Host
HS EHCI
FS OHCI

DMA

HS
USB

Device

PA

0 1
EN_UDPHS

HS
Transceivers

USB Host

Non OS Implementation.

No existing USB host driver for SAMA5d3x controllers.

Interfacing custom CDC device(LPC controller).

http://www.geoffknagge.com/uni/elec101/essay.shtml#Ch7

http://www.usbmadesimple.co.uk/ums_3.htm

http://datakey.com/resources/whitepapers/embedded-sytems-de sign-guide-for-
removable-usb-flash-drives/success

http://www.usbmadesimple.co.uk/ums_4.htm

http://www.usb.org/developers/defined_class

http://www.atmel.com/Images/Atmel-11121-32-bit-Cortex-A5-Mi-
crocontroller-SAMA5D3_Datasheet.pdf

Technologies Page No #16

Challenges faced

Solutions/Observations/Findings

TBD

References

USB Host

http://www.geoffknagge.com/uni/elec101/essay.shtml#Ch7
http://www.usbmadesimple.co.uk/ums_3.htm
http://datakey.com/resources/whitepapers/embedded-sytems-de%20sign-guide-for-removable-usb-%EF%AC%82ash-drives/success
http://www.usbmadesimple.co.uk/ums_4.htm
http://www.usb.org/developers/de%EF%AC%81ned_class
http://www.atmel.com/Images/Atmel-11121-32-bit-Cortex-A5-Mi-crocontroller-SAMA5D3_Datasheet.pdf

By:
 Abhinav saxena
 R&D Engineer

Thank You!
Does anyone have any questions?

Contact Us

Gurugram
(Headquarter)

United States
(Sales Office)

806, 8th Floor
BPTP Park Centra Sector–30,

NH–8 Gurgaon – 122001
Haryana (India)

info@logic-fruit.com

+91-0124 4643950

Bengaluru
(R&D House)

Sy. No 118, 3rd Floor,
Gayathri Lakefront,

Outer Ring Road, Hebbal,
Bangalore - 560 024

sales@logic-fruit.com

+91 80-69019700/01

Logic Fruit Technologies
INC 691 S Milpitas Blvd Ste

217 (Room 9) Milpitas
CA 95035

info@logic-fruit.com

+1-408 338 9743

*This document is the intellectual property of Logic Fruit Technologies . Any plagiarism or misuse is punishable according to Indian Laws

Technologies

https://www.logic-fruit.com/contact-us/

