
Technologies

Implementing with

A Lightweight and Secure Bootloader
for Embedded Systems

INTEL SLIM BOOTLOADER

Whitepaper

By:

R&D Engineer
Rajat Dongre

Contents

1. Overview 2

2. Introduction 2

3. Features 2

4. Architecture 2

5. Software and Hardware Environment setup 3

6. QEMU 3

7. Implementations of SBL 4

1) Compile time build environment 4

2) SBL Build Steps 4

- Download the SBL source code through Git using
the following command 4

- SBL Keys Generation: Steps to be followed to
generate SBLKeys 4

- Build SBL 5

- Build Outputs 6

8. Boot Linux with U-Boot on Emulator: 8

a. Build U-Boot and obtain u-boot-dtb.bin 8

b. Prepare Slim Bootloader 8

c. Build Instruction for QEMU target 8

d. Test Linux booting on QEMU target 10

9. Secure Boot 11

10. Troubleshoot 13

11. Conclusion 13

12. Reference 13

Technologies

Implementing with Intel Slim Bootloader A Lightweight and
Secure Bootloader for Embedded Systems Page No #01

Slim Bootloader is a lightweight and secure bootloader that is designed to provide a fast, reliable, and

secure boot experience on embedded devices. It is based on the UEFI secure boot specification and works

with platforms that have UEFI firmware to boot Linux or other operating systems. This white paper

provides an in-depth explanation of the Slim Bootloader design document, including the architecture,

features, specifications, and implementation details.

1. Overview

Embedded systems are becoming increasingly common in a wide range of applications, from industrial

automation and robotics to smart homes and consumer electronics. These systems often require a secure

and reliable boot process to ensure that the device is running the intended software and is protected

against malicious attacks. A bootloader is an essential component of the boot process, responsible for

loading the operating system and initializing the hardware devices. Slim Bootloader is an open-source

boot firmware, built from the ground up to be small, secure, and optimized running on Intel x86

architecture.

Slim Bootloader is designed to be:

Small

Fast

Secure

Extensible

Configurable

2. Introduction

Slim Bootloader is based on the UEFI Secure Boot specification, which provides a standard way to ensure

the integrity and authenticity of the boot process.

4. Architecture

3. Features

UEFI Firmware
(Unified Extensible
Firmware Interface)

UEFI Boot
Services

Slim Bootloader

Pre-boot Environment
-Hardware Initialization
-Firmware Services Initialization

Firmware Services
-UEFI Functions

Payload
-Operating System
-Additional Drivers/Scripts

 In fig. Slim Bootloader architecture

Technologies

Implementing with Intel Slim Bootloader A Lightweight and
Secure Bootloader for Embedded Systems Page No #02

The diagram shows the three main components of the Slim Bootloader:

The initial boot services used by Slim Bootloader to initialize the hardware and load the firmware
services are provided by the UEFI firmware.

The pre-boot environment provides the minimal set of functions required to initialize the hardware
devices and load the firmware services. This includes hardware initialization routines such as setting
up the memory and processor, as well as initialization of any additional hardware devices required
by the payload.

The firmware services provide a set of UEFI functions that can be used by the payload to interact
with the hardware devices and the operating system. These functions include file system access,
device driver loading and configuration, and network communication.

The bootloader's primary element, the payload, is responsible for loading the operating system as
well as any additional drivers or programs. We can use external payloads like grub, u-boot, etc.

The following conditions must be fulfilled to utilize Slim Bootloader:

Slim Bootloader source code and its build tools list are mentioned in the section (mention section
here: 7.1.b)

A hardware platform that supports multi-boot or secondary BIOS.

To load the operating system (Linux. Windows, etc.), Osloader(default), or any other UEFI payload
such as u-boot (here we are using u-boot).

QEMU for testing purposes

5. Software and Hardware Environment setup

QEMU is a free and open-source machine emulator and virtualizer. It can run operating systems and
programs made for one machine on a different machine.

We are using QEMU to emulate hardware and load a Yocto image to test our bootloader.

Please go through Qemu documentation for more details: https://www.qemu.org/docs/master/

We have mentioned details for running QEMU for our bootloader in section 7.2.d

6. QEMU

Technologies

Implementing with Intel Slim Bootloader A Lightweight and
Secure Bootloader for Embedded Systems Page No #03

https://www.qemu.org/docs/master/

b) SBL Keys Generation:

SBL keys in Slim Bootloader are used to sign and verify firmware images. This helps to ensure the

integrity of the firmware and prevent unauthorized modifications. So, generating SBL keys is a

prerequisite before the SBL build

Steps to be followed to generate SBLKeys:

1. Set environment variable for SBL Key directory using the following command:
 $ export SBL_KEY_DIR=<path to SblKeys directory>

Example:
$ export SBL_KEY_DIR="/home/ti/SblKeys"

Downloading slim-bootloader source code through git

The slim bootloader implementation steps are as follows:

1)Compile time build environment

a)SBL build is supported on both Windows and Linux environments. Here we will be using the Linux
environment to explain SBL.

b)Building in Linux:

i. Supported environment: Ubuntu Linux 18.04 LTS

ii. Install the following software:

1. GCC 7.3 or above

2. Python 3.6 or above

3. NASM 2.12.02 or above

4. IASL 20190509

5. OpenSSL

6. Git

iii. Build Tools Download - Ubuntu

1. Run the following command to install the required packages through the terminal:

$ sudo apt-get install -y build-essential iasl python uuid-dev nasm
openssl gcc-multilib qemu git

2)SBL Build Steps

a)Download the SBL source code through Git using the following command:

$ git clone https://github.com/slimbootloader/slimbootloader.git

$ cd slimbootloader

7. Implementations of SBL

Technologies

Implementing with Intel Slim Bootloader A Lightweight and
Secure Bootloader for Embedded Systems Page No #04

https://github.com/slimbootloader/slimbootloader.git

You can check above export command is working properly or not using the echo command:

$ echo $SBL_KEY_DIR

2. Use the following command to generate keys:
$ python3 $(SBL_ROOT)\BootloaderCorePkg\Tools\GenerateKeys.py -k $SBL_KEY_DIR

Example:
$ python3 BootloaderCorePkg/Tools/GenerateKeys.py -k $SBL_KEY_DIR

c) Build SBL

- SBL is built using the BuildLoader.py script and uses the following Python command to build:

 $ python BuildLoader.py <subcommand> <target> <options>

1. <subcommand> : build or clean

2. <target>: board name (e.g. apl or qemu)

 Example of SBL command to build for Qemu emulator:

 $ python BuildLoader.py build qemu

The outputs folder will be created if the build is successful. The outputs folder contains build binaries,

Stitch_Components.zip, etc.

Set environment variable for SBL key

Slimbootloader build command under execution

Technologies

Implementing with Intel Slim Bootloader A Lightweight and
Secure Bootloader for Embedded Systems Page No #05

d) Build Outputs:

i. If the build is successful, the Outputs folder will contain the build binaries. One of the output files
 will be Stitch_Components.zip which will be used in the stitching step.

ii. Boot to Yocto on QEMU Emulator:

iii. Download the QEMU Yocto Image to the SBL top-level source directory from this link: yocto. img

iv. Mount core-image-minimal-genericx86-64.hddimg locally and rename vmlinuz to bzImage:

v. Linux Users:: Use the commands below:

1. $ sudo mkdir mnt

2. $ sudo mkdir mnt/yocto

3. $ sudo mount -o loop core-image-minimal-genericx86-64.hddimg mnt/yocto

4. $ sudo mv /mnt/yocto/vmlinuz mnt/yocto/bzImage

5. $ sudo umount mnt/yocto

vi. Boot new Yocto image (with graphic console).

1. $ qemu-system-x86_64 -machine q35 -m 256 -drive id=mydrive,if=none,-

file=/home/ti/bootloader/core-image-minimal-genericx86-64.hddimg,format=raw

-device ide-hd,drive=mydrive -serial mon:stdio -boot order=d -pflash Out-

puts/qemu/SlimBootloader.bin

Showing a successful build of SBL for QEMU

Technologies

Implementing with Intel Slim Bootloader A Lightweight and
Secure Bootloader for Embedded Systems Page No #06

QEMU command to run Yocto image through slimbootloader under execution

After executing the QEMU command to run the Yocto image through

2. Output:

Technologies

Implementing with Intel Slim Bootloader A Lightweight and
Secure Bootloader for Embedded Systems Page No #07

The following steps are required to integrate U-Boot as a payload with Slim Bootloader

Build Instructions for U-Boot:

1. Build U-Boot and obtain u-boot-dtb.bin:

a) $ git clone https://gitlab.denx.de/u-boot/u-boot.git && cd u-boot

b) $ git checkout -b test c2addf9fc171de55d99fcccd7e5622894f74fe18

c) $ make distclean

d) $ make slimbootloader_defconfig

e) $ make all

2. Prepare Slim Bootloader

a) Create payloadBins directory in payloadPkg:

$ mkdir -p <Slim Bootloader Dir>/PayloadPkg/PayloadBins/

b) Copy u-boot-dtb.bin to the PayloadBins directory

$ cp <U-Boot Dir>/u-boot-dtb.bin <Slim Bootloader Dir>/PayloadPkg/Payload-

Bins/u-boot-dtb.bin

3. Build Instruction for QEMU target

Slim Bootloader supports multiple payloads, and a board of Slim Bootloader detects its target pay
 load by PayloadId inboard configuration. The payload can be any 4-byte value.

a) Update payload. Let’s use ‘U-BT’ as an example.
$ vi Platform/QemuBoardPkg/CfgData/CfgDataExt_Brd1.dlt

Changes:

-GEN_CFG_DATA.PayloadId | 'AUTO'

+GEN_CFG_DATA.PayloadId | 'U-BT'

b) Update payload textbase. PAYLOAD_EXE_BASE must be the same as U-Boot

CONFIG_SYS_TEXT_BASE in board/intel/slimbootloader/Kconfig. PAYLOAD_LOAD_HIGH

must be 0:

$ vi Platform/QemuBoardPkg/BoardConfig.py

Yocto image is successfully running.

8. Boot Linux with U-Boot on Emulator

Technologies

Implementing with Intel Slim Bootloader A Lightweight and
Secure Bootloader for Embedded Systems Page No #08

https://gitlab.denx.de/u-boot/u-boot.git && cd u-boot

Slimbootloader build command under execution using u-boot payload

Showing a successful build of SBL for QEMU

Changes:

+self.PAYLOAD_LOAD_HIGH = 0

+self.PAYLOAD_EXE_BASE = 0x00100000

c) Build QEMU target. Make sure u-boot-dtb.bin and U-BT PayloadId are in the build command.

The output is Outputs/qemu/SlimBootloader.bin:

$ python3 BuildLoader.py build qemu -p “OsLoader.efi:LLDR:Lz4;u-boot-dtb.bin:U-BT:

Lzma”

Technologies

Implementing with Intel Slim Bootloader A Lightweight and
Secure Bootloader for Embedded Systems Page No #09

QEMU command to run Yocto image through slimbootloader
under execution

d) Launch Slim Bootloader on QEMU. You should reach at U-Boot serial console:

 $ qemu-system-x86_64 -machine q35 -nographic -serial mon:stdio -pflash Out

 puts/qemu/SlimBootloader.bin

4. Test Linux booting on QEMU target:

Let’s use LeafHill (APL) yocto image for testing:

a) Prepare yocto image hard disk image:

1. $ wget http://downloads.yoctoproject.org/releases/yoc-
to/yo-to-2.0/machines/leafhill/leafhill-4.0-jethro-2.0.tar.bz2

2. $ tar -xvf leafhill-4.0-jethro-2.0.tar.bz2

3. $ ls -l leafhill-4.0-jethro-2.0/binary/core-image-sato-intel-corei7-64.hddimg

b) Launch Slim Bootloader on QEMU with disk image:

$ qemu-system-x86_64 -machine q35 -nographic -serial mon:stdio -pflash Out-
puts/qemu/SlimBootloader.bin -usb -device qemu-xhci,id=xhci,bus=pcie.0,addr=4 -device
usb-storage,bus=xhci.0,drive=mydrive,serial=foo -drive id=mydrive,if=none,-
file=/home/ti/Slim_Bootloader/leaf-
hill-4.0-jethro-2.0/binary/core-image-sato-intel-corei7-64.hddimg,format=raw

c) Update boot environment values on the shell:

=> setenv bootfile vmlinuz

=> setenv bootdev usb

=> boot

Technologies

Implementing with Intel Slim Bootloader A Lightweight and
Secure Bootloader for Embedded Systems Page No #10

http://downloads.yoctoproject.org/releases/yoc-
to/yo-to-2.0/machines/leafhill/leafhill-4.0-jethro-2.0.tar.bz2

 Updating boot environment values on the shell

Yocto image is successfully running

Secure Boot is a security feature that ensures the integrity and authenticity of the bootloader and
software components during the boot process.

It relies on digital signatures to verify the authenticity of the loaded components.

Secure Boot establishes a chain of trust by verifying the signatures of each component against a set of
trusted public keys

Slim Bootloader supports verified boot as part of its secure boot feature. Verification uses either of the
following two approaches.

1. Hash verification

2. Signature verification

9. Secure Boot

Technologies

Implementing with Intel Slim Bootloader A Lightweight and
Secure Bootloader for Embedded Systems Page No #11

 In fig. Verified boot flow

Verified Boot FLow:

The initial Root of Trust (RoT) provides the anchor of trust for the platform and is typically
rooted in hardware.

The chain of trust is maintained by cryptographically verifying each subsequent component
before it is executed.

If the verification of a component fails, the boot process will be halted.

Verified boot ensures all executed code comes from a trusted source SBL supports verified boot.

The below picture depicts how SBL maintains a chain of trust as the platform boots across

various stages:

Technologies

Implementing with Intel Slim Bootloader A Lightweight and
Secure Bootloader for Embedded Systems Page No #12

SBL Verification Chain of Trust

ST
A

G
E

1B
ST

A
G

E
2

1. In uboot, after running the command:

 make slimbootloader_defconfig

You could get the following error:

/bin/sh: 1: bison: not found make[1]: *** [scripts/Makefile.lib:222: scripts/kconfig/z-

conf.tab.c] Error 127

make: *** [Makefile:565: slimbootloader_defconfig] Error 2

Solution:

1) Manual install of bison using the following command:

sudo apt-get install bison

2) Also, install Felix using the following command:

sudo apt-get install flex

10. Troubleshoot

This document provides a detailed understanding of the steps involved in successfully implementing Slim

Bootloader on embedded devices.

11. Conclusion

1. https://slimbootloader.github.io/introduction/index.html

2. https://u-boot.readthedocs.io/en/latest/

12. References

Technologies

Implementing with Intel Slim Bootloader A Lightweight and
Secure Bootloader for Embedded Systems Page No #13

https://slimbootloader.github.io/introduction/index.html
https://u-boot.readthedocs.io/en/latest/

Thank You!

Gurugram
(Headquarter)

United States
(Sales Office)

806, 8th Floor
BPTP Park Centra Sector–30,

NH–8 Gurgaon – 122001
Haryana (India)

info@logic-fruit.com

+91-0124 4643950

Bengaluru
(R&D House)

Sy. No 118, 3rd Floor,
Gayathri Lakefront,

Outer Ring Road, Hebbal,
Bangalore - 560 024

sales@logic-fruit.com

+91 80-69019700/01

Logic Fruit Technologies
INC 691 S Milpitas Blvd

Ste 217 (Room 9)Milpitas
CA 95035

info@logic-fruit.com

+1-408 338 9743

*This document is the intellectual property of Logic Fruit Technologies . Any plagiarism or misuse is punishable according to Indian Laws

Technologies

