
RISC-V Based
System Development

Enabling

WHITEPAPER

This whitepaper focuses on providing a jump start
on RISC-V development. It shows how to build a
verification environment quickly involving a
RISC-V core and required peripherals based
on selected applications

Technologies

- By

Sandeep Nasa &
Sagar Thakran

Technologies

Enabling RISC-V Based System
Development

VERIFYING A RISC-V CORE-BASED DESIGN: A PRIMER
This article focuses on providing a jump start on RISC-V development. It shows how to build a verification

environment quickly involving a RISC-V core and required peripherals based on selected applications.

RISC-V is an open-source instruction set architecture (ISA) specification. It is a general-purpose ISA

developed at U.C. Berkeley, which is designed for supporting a wide variety of applications, from

micropower embedded devices to high-performance cloud server multi-processors, and is freely available

for anyone to build a processor core compliant to its ISA. Because it is open-source, it is possible to

customize the processor’s core and still be compliant to the RISC-V ISA, which has led to a rapidly-

growing ecosystem in the market based on application requirements. All these custom-based processor

ecosystems are used for various applications by integrating required peripherals. Many companies/

organizations have developed RISC-V cores for targeted applications and made them available for further

enhancement via open source.

To make a working application, we’ll need a verification environment to verify the intended functionality.

A good verification environment flow is required to verify the targeted application and showcase

performance for commercial needs. To fulfill the goal of creating a system with the core and peripherals

based on an application, we need to enable the verification environment along with selected test cases that

suits our needs. To achieve this, we need to select one of the standard cores along with its test suite. We

have selected a 32-bit RISC-V core from Western Digital (named SweRV_EH1).

The rest of this article will explain the steps needed to enable a SystemVerilog-based verification

environment on QuestaSim for the SweRV_EH1 RISC-V core. One test case is selected which is modified as

per traffic application we are targeting here. At the end of this article, you will find a link to the source for

this project so you may walk through the code on your own.

Areas of Focus:
1. Providing an example with all required steps to jump start RISC-V core-based application development.

2. Enabling System-Level Verification.

3. Providing one working test case for ready reference for further enhancement based on need.

4. Providing a Simplified Approach to Enable the Simulation Environment in QuestaSim.

Enabling RISC-V Based System Development Page No #2

Technologies

INTRODUCTION
The emergence of the RISC-V ISA as an open-source platform is rapidly attracting interest in the industry,

which has resulted in many companies building their own custom-based processors to meet the needs of

their targeted applications. An ISA is the basic vocabulary that allows hardware and software to

communicate. Since the same ISA is the target. It also helps to have a common benchmark to compare

cores from different sources on various criteria, such as performance, and energy efficiency for a variety of

applications.

RISC-V is designed with a small, fixed-base ISA. It includes modular fixed-standard extensions that can

be used with most of the code. This architecture enables the development of application-specific

extensions without needing to modify the standard ISA core. In addition to enabling customization, this

approach is expected to prevent, or at least minimize, fragmentation of the RISC-V software ecosystem.

Designing an application using a RISC-V core will require some time to build a development environment.

Details mentioned in this abstract will speed up the process to build a RISC-V core based system using the

Western Digital core named SweRV_EH1.

SweRV EH1 CORE BRIEF DESCRIPTION
SweRV EH1 core by Western Digital is based on the RISC-V ISA architecture and targeted for high

performance embedded applications. The micro architecture of this core is implemented on 28nm

technology by TSMC and has amazing performance benchmarks.

SweRV EH1 core is open-sourced and available on GitHub as well (please see the link below). The SweRV

EH1 has a core complex which consists of a microarchitecture core along with other components. The Core

Complex Block Diagram is shown below:

Enabling RISC-V Based System Development Page No #3

Figure 1: SwerRV EH1 Core Complex

Technologies

The features of the SweRV EH1 Core complex are as follows:
a. The micro architecture core is an RV32IMCcompliant RISC-V core with branch predictor.

b. Optional instruction and data closely coupled memories with ECC protection.

c. Optional 4-way set-associative instruction cache with parity or ECC protection.

d. Optional programmable interrupt controller supporting up to 255 external interrupts.

e. Four system bus interfaces for instruction fetch, data accesses, debug accesses, and external DMA
accesses to closely coupled memories (configurable as 64-bit AXI4 or AHB-Lite).

f. A core debug unit compliant with the RISC-V debug specification.

g. 1GHz target frequency (for 28nm technology node).

The core has superscalar architecture, with dual issue 9-stage pipeline supporting 4 arithmetic
logic units (ALU) labeled as EX1 to EX4, each in two pipelines I0 and I1.

There are 9 stages present in the pipeline including writeback, and 4 stall points: Fetch1, Align,
Decode, and Commit.

The Fetch unit has 2 stages. Align will form instructions from the 3 fetch buffers. Decode will
decode up to 2 instructions from 4 fetch buffers. Commit will commit up to 2 instructions per cycle,
based on the workload.

It includes one load/store pipeline, one multiplier pipeline and one 34-cycle out-of pipeline divider
unit.

Compared to previous open-source RISC-V cores such as Rocket or Pulpino, SweRV uses a
superscalar dual-issue micro architecture which results in improving the various performance
benchmarks by 20-30%, at a relatively small expense of core gate count or implementation area.

Architectural details of the SweRV EH1 micro architecture core is explained
below:

Enabling RISC-V Based System Development Page No #4

Figure 2: SwerRV EH1 Core Pipeline

Technologies

STEPS/SEQUENCE TO BUILD ENVIRONMENT WITH RISC-V

CORE BASED APPLICATION

In this section we review the steps to execute one test case for the traffic application, which can be

enhanced for any other application as well. If you encounter any issues in recreating these steps in

your environment, please refer to the “Issues and Resolution” section of this article.

The steps are listed below:

Replicate SweRV Core Based Application Environment and execute default test case

[using QuestaSim]:

To start working on the RISC-V core based application development, the first step is to enable the database

in the local machine by running the default test case. Follow the below steps to do the same:

a. Download the RISC-V core repository from Github. (see reference 1)

b. Set the following environment variables:

1. RV_ROOT = <Repository_Path> / Cores-SweRV-master
2. BUILD_PATH = <Sim_Output_Path>

c. Check the default configuration of the SweRV-core, and if necessary change it based on the application
requirements.

d. Check which parameters are configured by default:

$RV_ROOT/configs/swerv.config -h

e. Once done with configuration, we need to modify the Makefile slightly to run the example in
QuestaSim:

Change line “all: clean verilator” to “all: clean vlog”

f. Execute the default test case to print “Hello World” in the console window:

make -f $RV_ROOT/tools/Makefile

Salient Features of the Environment

There are a few features of the SweRV Environment that will need to be modified to implement our traffic

controller application.

a. There are AXI and AHB peripherals present in the environment. AXI is selected by default and AHB can
be made default by using switch -target=default_ahb in make command.

b. We can select environment user options and parameters based on application requirements. Some
 important ones are as follows.

User options:

-target = { default, default_ahb, default_pd, high_perf}

Enabling RISC-V Based System Development Page No #5

Technologies

Parameters settings:

-ahb_lite

build with AHB-lite bus interface.

default is AXI4

-pic_total_int = { 1, 2, 3, ..., 255 }

number of interrupt sources in PIC

c. The address used to write into AHB peripheral is 0xD0580000.

Enabling RISC-V Based System Development Page No #6

Traffic Light Application details

Below you will find the block diagram of the Traffic Light Application with description:

Figure 3: Basic Block Diagram of a Traffic Light Application

a. This is a basic block diagram of an application that controls a traffic light for smooth traffic
management. Here we are configuring the time duration for each light to turn on along with the

 sequence in which the different colored lights are turned on.

b. We are using 3 colors here so 3 byte registers will be used for time duration and two byte registers
for sequence control.

Technologies

Execution of Test Case for Traffic Application

The execution of the test cases is explained in following steps:

a. First, we need to install the RISC-V based GCC supported toolchain. We need to set an environment
variable to give a path for this tool so that the Makefile can get these compiled libraries. We have used

 SysGCC tool chain for this [see number 2 in the references].

b. The Environment variable to be set fortool chain is:

 RISCV=C:\SysGCC\risc-v\bin

c. Once done with the toolchain , we need to select the AHB interface as the default connection. To enable
this, we need to use the option -target=default_ahb in the makefile command.

d. Modifications done in hello_word.s file There are some modifications required in the default assembly
language test as shown below. Also the file name is renamed to traffic_app.s

Original File:

Updated File:

Lines shown in original snapshot are commented and some new lines are added as shown in the snapshot

below.

Enabling RISC-V Based System Development Page No #7

Technologies

e. Modifications done in tb_top.sv file. In this file address and data are captured and printed to showcase

that the data written in the testcase reaches the AHB slave. The portion of code used to print to the

 console is used for this. We get output on the terminal as well as in console.log file.

Original File:

Updated File:

The lines shown in original file are commented and 2 extra printing lines are added below to represent

that the info sent by the testcase reaches the ahb-lite slave.

f. Once done with the configuration part, run the makefile command:

 make -f $RV_ROOT/tools/Makefile -target=default_ahb

g. The steps followed inside the Makefile are shown in the flowchart for easy understanding:

Enabling RISC-V Based System Development Page No #8

Figure 4: Makefile Steps

Technologies

In the flow chart first the traffic_app.s file is taken as input and the assembler will convert it to the

traffic_app.o object file. This object file is linked to the standard riscv libraries by the linker and the

executable file named traffic_app.exe is generated.

After this compilation is done, simulation finally proceeds.

The output captured in AHB-LITE Slave is shown below which shows that data sent to ahb slave:

We have highlighted below a few issues we faced during the bring up of the RISC-V based application

development, including an issue faced in PATH set to RV_ROOT in cygwin terminal.

Issue: we were setting a path with “/” in cygwin with a path starting from /cygdrive/d/RISC-V/
Cores-SweRV-master which is not taken properly by Makefile.

Root Cause: Internally Makefile is using path of os prompt so it expects path in dos style.

Resolution: Give PATH in cygwin style using "/" and the path is starting with D:/RISC-V/Cores-
SweRV-master so that DOS path is available to Makefile. After this change execution started
working.

Enabling RISC-V Based System Development Page No #9

Figure 5: Data Sent to the ABH Slave

Address d0580000

Data 3f

Address d0580000

Data 22

Data 40

Address d0580000

Data 41

Address d0580000

ISSUES AND RESOLUTIONS

The RISC-V based application development flow has numerous possibilities for future enhancements

such as:

CONCLUSION AND FUTURE ENHANCEMENT

Technologies

a. The current example can be used as a starting point for any other similar application. We showed
how to add one address, but more addresses can be added for multiple peripherals using a similar

 scheme.

b. The algorithm used can also be enhanced for any complex application.

c. Peripheral code can be attached after the AHB slave depending on the application requirement.

d. Enhancements can be done by changing the configuration. Some examples are provided by
Western Digital.

e. Users can move on to the advanced version of the Existing core , as Western Digital also has EH2
Core also which is a better version of the previous one.

f. Here we used assembly language but the same infrastructure can be used to run c-based code if
desired.

The Environment Structure for understanding the hierarchy is shown below:

Enabling RISC-V Based System Development Page No #10

Figure 6: Environment Structure

ENVIRONMENT STRUCTURE

Technologies

1) Configs: Configuration Directory consists of a configuration script for SweRV.

This script will generate a consistent set of`defines needed for the design and testbench.

2) Design: Design Root directory, which contains all the design description files of the SweRV EH1 core.

This directory has the following subdirectories which represent different blocks of the core having

design description files written in SystemVerilog:

IFU: Instruction fetch Unit

EXU: Execution Unit

DEC: Decoders and Registers

LSU: Load and Store Unit

DBG: Debugger Unit

3) Docs: Docs Directory consists of Reference Documents for understanding the technical specifications of

the SweRV_EH1_Core.

This Directory also contains a Programmer’s Reference Manual which enables the user to understand the

register description and commands to start writing the assembly language program.

4) Snapshots: Output Directory formed where generated configuration files are created using a

configuration script.

5) Testbench: Testbench directory consists of testbench files such as tb_top and interface files along with

two sub directories named as asm and hex.

asm: A subdirectory under Testbench, where users create application specific assembly files for test

case execution.

hex: A subdirectory under Testbench, where ready-made hex files are present for default test case

execution if no RISC-V software is installed.

6) Tools: Tools Directory consists of tool specific scripts [for QuestaSim, Verilator and other tools] and the

Makefile utility for test cases execution.

7) Work: Work directory consists of a compiled snapshot of the design and testbench.

Users can load the work directory to see the design hierarchy and perform the simulations using the

QuestaSim tool.

REFERENCE

1. SweRV Repository: https://github.com/chipsalliance/Cores-SweRV

2. GCC 10.1.0 for RISC-V development: https://gnutoolchains.com/risc-v/

Enabling RISC-V Based System Development Page No #11

https://github.com/chipsalliance/Cores-SweRV
https://gnutoolchains.com/risc-v/

Technologies

Thank You!
Does anyone have any questions?

Contact Us

806, 8th Floor BPTP Park Centra
Sector–30, NH–8 Gurgaon – 122001

Haryana (India)

+91-0124 4643950

info@logic-fruit.com

- By

Sandeep Nasa & Sagar Thakran

https://www.logic-fruit.com/contact-us/

