
Technologies

By :
Dheeraj Punia And Daivik Bhatia

WHITEPAPER

ACCELERATED
Application development
on AMAZON EC2 F1

OVERVIEW OF AWS EC2 FPGA DEVELOPMENT KIT
The AWS FPGA Development Kit is a set of development and runtime tools for designing, debugging,

compiling, and running hardware-accelerated programs on Amazon F1 instances. The kit, which is

available on GitHub, includes all documentation on F1, internal FPGA interfaces, and compiler scripts for

producing Amazon FPGA Images (AFIs).

Ethernet frames can be streamed from a network interface to the FPGA on F1 instances for processing and

returned using the Virtual Ethernet framework, which supports shell versions F1.X.1.4 and F1.S.10. With no

development tool fees, it's shared across this GitHub repository and AWS's FPGA Developer

AMI - Centos/AL2.

Amazon EC2 F1 Instances
F1 instances are effective for a wide spectrum of developers, from low-level hardware designers to

software engineers that prefer C/C++ and openCL environments. Once your FPGA design is complete, you

can register it as an Amazon FPGA Image (AFI) and deploy it to your F1 instance in just a few clicks. Target

applications that potentially benefit from F1 instance acceleration include genomic analysis,

search/analytics, image, and video processing, network security, electronic design automation (EDA),

image and file compression, and big data analytics.

In Amazon EC2 F1 instances, FPGAs are used to provide bespoke hardware accelerations. F1 instances are

easy to program and come with everything you need to create, simulate, debug, and compile hardware

acceleration code, including an FPGA Developer AMI and cloud-based hardware development.

In a variety of applications, using F1 instances to install hardware accelerations can help overcome

difficult research, engineering, and commercial difficulties that require high bandwidth, better

networking, and extremely high computation capabilities. Some of the platform's most important features

are given here; to learn more about F1 Instances, click here.

Technologies Accelerated Application development on Amazon EC2 F1 Page No #01

AWS Host CPUs
PCIe AXI

RYFT CL Region

AXI
Interrupt

mmlo
Ryft Analytics

Primitive

AWS
Shell

DDR4 DIMM
16 GiB

DDR4 DIMM
16 GiB

Multi-Port DDR
Controller

Multi-Port DDR
Controller

Results Data
De-packetizer

Input Data
Packetizer

DMA
Controller

Input Data Loader

AXI
Slave

Input Data Unloader

Result Data Unloader Result Data Loader

a
b
c
d

https://github.com/aws/aws-fpga
https://www.ibm.com/docs/en/aix/7.1?topic=communication-defining-virtual-ethernet-adapter
https://youtu.be/OoRu3wWv924
https://d1.awsstatic.com/events/reinvent/2019/Accelerate_applications_using_Amazon_EC2_F1_FPGA_instances_CMP314.pdf

F1 Platform Features

1-8 Xilinx UltraScale+ VU9P based FPGA slots.

User-defined clock frequency driving all CL to Shell interfaces.

Multiple free-running auxiliary clocks.

PCI-E endpoint presentation to Custom Logic(CL).

Virtual JTAG, Virtual LED, Virtual DIP Switches.

PCI-E interface between Shell(SH) and Custom Logic(CL).

DDR interface between SH and CL.

Technologies Accelerated Application development on Amazon EC2 F1 Page No #02

Development Flow
After building an FPGA design, developers can create an Amazon FPGA Image (AFI) and deploy it to an F1

instance (also known as CL - Custom logic). AFI is scalable and secure, and it can be reused, shared, and

deployed. Click here for more information on the various development environments.

FPGA Developer AMI
The FPGA Developer AMI is available for free on the AWS marketplace, and it includes tools for creating

FPGA designs that run on AWS F1. Due to the large size of the FPGA utilised inside AWS F1 Instances, Xilinx

tools function best with 32GiB Memory. The z1d.xlarge/c5.4xlarge and z1d.2xlarge/c5.8xlarge instance

types would provide the fastest execution speed with 30GiB+ and 60GiB+ of RAM, respectively.

Developers looking to save money can begin coding and running simulations on low-cost instances

such as t2.2xlarge, then shift their accelerated code synthesis to the larger instances. Depending on your

needs, choose the appropriate specs for your instances. Planning ahead of time could save you a lot of time

and money in the long run. The image below depicts how the AMI interface is used with the F1 instance for

FPGA acceleration on AWS.

https://github.com/aws/aws-fpga#development-environments
https://aws.amazon.com/marketplace/pp/prodview-gimv3gqbpe57k
https://aws.amazon.com/marketplace
https://www.logic-fruit.com/blog/fpga/fpga-design-architecture-and-applications/

Technologies Accelerated Application development on Amazon EC2 F1 Page No #03

Hardware Development Kit (HDK)

AWS Shells

Go to the HDK directory, which contains documentation, examples, simulation, build, and AFI generating

scripts, to get started creating Amazon FPGA Images. Installing the HDK on a local server or an Amazon

EC2 instance is possible. The development kit is not required if you plan to utilise a pre-built AFI

provided by another developer.

Each FPGA instance on Amazon EC2 is separated into two partitions:

Shell Version Dev Kit Branch

F1.X.1.4 Provides all the interfaces listed here,
includes DMA.

All of the interfaces listed here are
available. This shell is devoid of the
DMA engine, resulting in a considerable
reduction in Shell resource
consumption.

F1.S.1.0

master

small_shell

Shell Name

F1 XDMA
Shell

F1 Small
Shell

Description

https://github.com/aws/aws-fpga/blob/master/hdk/README.md
https://github.com/aws/aws-fpga/
https://github.com/aws/aws-fpga/blob/master/hdk/docs/AWS_Shell_Interface_Specification.md
https://github.com/aws/aws-fpga/tree/small_shell
https://github.com/aws/aws-fpga/blob/small_shell/hdk/docs/AWS_Shell_Interface_Specification.md

Technologies Accelerated Application development on Amazon EC2 F1 Page No #04

ACCELERATE YOUR C/C++ APP ON AN
AWS F1 FPGA INSTANCE WITH XILINX VITIS
The software-defined development flow is used to accomplish this. Xilinx Vitis and SDAccel is a complete

development environment for applications that use Xilinx FPGAs. It employs the OpenCL heterogeneous

computing architecture to offload compute-intensive workloads to the FPGA. The accelerated program is

written in C/C++, OpenCL, or RTL using OpenCL APIs. Before continuing, double-check that you meet all

of the Prerequisites.

Runtime Tools (SDK)
The SDK directory contains the runtime environment required to run on EC2 FPGA instances. It includes all

of the essential drivers and tools for managing the AFIs loaded on the FPGA instance. The SDK is only

required after an AFI has been installed on an EC2 FPGA instance; it is not necessary during the

construction of an AFI. Click here to learn more about the SDK resources available.

Build the host application and the Xilinx FPGA binary
Emulate your Design

Emulation's primary goal is to ensure that an application is functionally correct before determining how to

partition it between the host CPU and the FPGA.

Software-defined Development Environment
Customers can use the software-defined development environment to compile their C/C++/OpenCL code

into FPGA kernels and then use OpenCL APIs to transport data to the FPGA. Software developers will find a

familiar programming environment that supercharges cloud applications even if they have no prior

experience with FPGAs. This platform allows C/C++ and RTL accelerator designs to be integrated into a

C/C++ program development environment.

This method enables faster prototyping in C/C++ while also permitting manual RTL optimization of key

blocks. This approach is similar to using software compiler optimization techniques to improve

time-critical routines.

When the Shell and CL are combined at the end of the development process, an Amazon FPGA Image (AFI)

is created that can be loaded onto Amazon EC2 FPGA Instances.

https://www.logic-fruit.com/blog/fpga/design-closure-fpga-design/
https://github.com/aws/aws-fpga/blob/master/sdk/README.md
https://github.com/aws/aws-fpga#runtime-tools-sdk
https://github.com/aws/aws-fpga/tree/master/SDAccel#prerequisites

Technologies Accelerated Application development on Amazon EC2 F1 Page No #05

Software (SW) Emulation

For CPU-based (SW) emulation, both the host code and the FPGA binary code are compiled to execute on

an x86 processor. SW Emulation allows engineers to iterate and refine algorithms quickly thanks to its

rapid compilation. Iteration takes about the same amount of time as compiling and running software on a

computer.

Hardware (HW) Emulation

The SDAccel hardware emulation cycle enables the developer to validate the logic generated for the FPGA

binary. In this emulation cycle, the SDAccel hardware simulator is used to validate the functionality of the

code that will be executed on the FPGA Custom Logic.

Generating xclbin

The host program, which is written in C/C++ and employs either the XRT native API or OpenCLTM API calls,

is built using the GNU C++ compiler (g++), which is part of the GNU compiler collection (GCC). Each source

file is compiled into an object file (.o) and linked with the Xilinx® runtime (XRT) shared library to create

the executable that runs on the host CPU.

As shown in the below diagram, the kernel code is written in C, C++, OpenCLTM C, or RTL, and it is built by

compiling it into a Xilinx® object (XO) file and linking the XO files into a Xilinx binary (.xclbin) file.

Open CL C/C++ C/C++ RTL

v++ -c v++ -c

v++ --link

Vitis HLS Vivado IP
Packager

.xo .xo .xo .xo

.xclbin

Target
Platform

https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/Software-Emulation
https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/Hardware-Emulation
https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/Building-the-Host-Program
https://docs.xilinx.com/r/en-US/ug1076-ai-engine-environment/Host-Code-Reference-with-ADF-API-and-XRT-API
https://www.khronos.org/opencl/
https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/Building-the-Device-Binary

Technologies Accelerated Application development on Amazon EC2 F1 Page No #06

Setup CLI and Create S3 Bucket

The developer must create an S3 bucket for the AFI generation. The bucket will include a tar file as well as

logs generated by the AFI creation service. The JSON output format is required by the AWS SDAccel scripts,

and any other output format will cause the scripts to fail (ex: text, table). JSON is the default output format

for the AWS CLI.

$ aws configure # to set your credentials (found in your console.aws.amazon.com page), region

(us-east-1) and output (json)

The AWS scripts will upload your DCP to AWS for AFI generation, which will be packaged into a tar file,

using this S3 bucket. Begin by making a bucket:

$ aws s3 mb s3://<bucket-name> --region us-east-1 # Create an S3 bucket (choose a unique bucket

name)

$ touch FILES_GO_HERE.txt # Create a temp file

$ aws s3 cp FILES_GO_HERE.txt s3://<bucket-name>/<dcp-folder-name>/ # Choose a dcp folder

name

During the AFI setup process, logs will be generated and stored in your S3 bucket. These logs could be used

to debug if the AFI generation fails. Next, create a folder for your log files:

$ touch LOGS_FILES_GO_HERE.txt # Create a temp file

$ aws s3 cp LOGS_FILES_GO_HERE.txt s3://<bucket-name>/<logs-folder-name>/ # Choose a logs

folder name

Once your AFI has been properly built, you can delete the tar file and logs as needed. If you delete these

files, your AFI will not be affected.

Creating Amazon FPGA Image (AFI)
The FPGA (field-programmable gate array) AMI is a supported and updated CentOS Linux image from

Amazon Web Services. All of the FPGA creation and run-time tools needed to construct and operate

custom FPGAs for hardware acceleration are pre-installed on the AMI.

S3 Bucket Folder Objects

Public
Access

https://en.wikipedia.org/wiki/Hardware_acceleration
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html

Technologies Accelerated Application development on Amazon EC2 F1 Page No #07

You've now completed the build of your Xilinx FPGA Binary (xclbin) as well as the necessary CLI and S3

bucket. You are now ready to begin building the AFI. To learn how to track the status of your registered AFI,

go here.

The create sdaccel afi.sh script is included to help you generate an AFI from a Xilinx FPGA binary. Here's

how it works:

Takes in your Xilinx FPGA Binary *.xclbin file

Calls aws ec2 create_fpga_image to generate an AFI under the hood

Generates a <timestamp>_afi_id.txt which contains the identifiers for your AFI

Creates an AWS FPGA Binary file with an *.awsxclbin extension that is composed of Metadata and
AGFI-ID.

This *.awsxclbin is the AWS FPGA Binary file that will need to be loaded by your host application to
the FPGA

$ $ SDACCEL_DIR/tools/create_sdaccel_afi.sh

-xclbin=<input_xilinx_fpga_binary_xclbin_filename>

-o=<output_aws_fpga_binary_awsxclbin_filename_root> \

-s3_bucket=<bucket-name> -s3_dcp_key=<dcp-folder-name>

-s3_logs_key=<logs-folder-name>

Run the FPGA accelerated application on Amazon F1 instances
Before starting an FPGA instance with the FPGA Developer AMI from AWS Marketplace, check the

AMI compatibility table and the runtime compatibility table. To run your SDAccel programs, you can create

your own Runtime AMI for Amazon FPGA instances. If the developer flow (compilation) was done on a dif-

ferent instance, you'll need to accomplish the following:

Copy the compiled host executable (exe) to the new instance.

Copy the *.awsxclbin AWS FPGA binary file to the new instance.

Depending on the host code, the *.awsxclbin may need to named

<hostcodename>.hw.<platformname>.awsxclbin

Copy any data files required for execution to the new instance.

Clone the GitHub repository to the new F1 instance and install runtime drivers.

$ git clone https://github.com/aws/aws-fpga.git $AWS_FPGA_REPO_DIR

$ cd $AWS_FPGA_REPO_DIR

$ source sdaccel_setup.sh

Ensure the host application can find and load the *.awsxclbin AWS FPGA binary file.

Source the Runtime Environment & Execute your Host Application:

$ sudo -E /bin/bash # source $AWS_FPGA_REPO_DIR/sdaccel_runtime_setup.sh # Other runtime

env settings needed by the host app should be setup after this step # ./helloworld

https://github.com/aws/aws-fpga/tree/master/SDAccel#tracking-the-status-of-your-registered-afi
https://github.com/aws/aws-fpga/blob/master/SDAccel/tools/create_sdaccel_afi.sh
https://aws.amazon.com/marketplace/pp/prodview-gimv3gqbpe57k
https://github.com/aws/aws-fpga/blob/master/README.md#fpga-developer-ami
https://github.com/aws/aws-fpga/blob/master/SDAccel/docs/Create_Runtime_AMI.md#runtime-ami-compatibility-table
https://github.com/aws/aws-fpga/blob/master/SDAccel/docs/Create_Runtime_AMI.md
https://github.com/aws/aws-fpga/tree/master/SDAccel#gitsetenv

Technologies Accelerated Application development on Amazon EC2 F1 Page No #08

Migration of Alveo U200 Design to AWS F1 Instance
The Vitis development flow provides the developer with platform-independent APIs and interfaces. This

makes moving applications between similar FPGA acceleration cards a lot easier. The source code for the

software application and the FPGA kernels remains intact in this development sequence. To port the

application from Alveo U200 to AWS F1, just command line changes are required. This example shows how

to move a Vitis application from an Alveo U200 card to an AWS EC2 F1 instance.

Build for AWS F1
The only change necessary to migrate the accelerated application from Alveo U200 to AWS F1 is in the

options. cfg file (configuration file). The source code is unchanged, and the g++ and v++ commands are

the same.

1. Go to the f1 directory.

2. The options.cfg file for AWS F1 contains the following options:

platform=xilinx_aws-vu9p-f1_shell-v04261818_201920_3 [connectivity]
sp=vadd_1.in1:DDR[0]
sp=vadd_1.in2:DDR[0]
sp=vadd_1.out:DDR[0]

2.1. The AWS F1 shell is targeted by the platform option. The string reflects the name of the most
latest shell, which can be found on the aws-fpga repo. The platform should be pointed to the xpfm
file. platform=$AWS PLATFORM, for example.

2.2. The kernel arguments are connected to DDR[0], which is the DDR interface in the AWS F1
shell, using the sp options. On AWS F1, keeping the same settings as the U200 would result in a
functioning design. However, the sp parameters are updated to utilise DDR[0] in order to build the
exact identical configuration and target the DDR interface in the AWS F1 shell.

https://github.com/aws/aws-fpga/blob/master/Vitis/docs/Alveo_to_AWS_F1_Migration/example/README.md#alveo-u200-to-aws-f1-migration-example
https://www.xilinx.com/products/boards-and-kits/alveo/u200.html

Technologies Accelerated Application development on Amazon EC2 F1 Page No #09

Run the App on AWS F1

Summary

1. To source the Vitis runtime environment, run the following command.

source $AWS_FPGA_REPO_DIR/vitis_runtime_setup.sh

2. Use the .awsxclbin FPGA binary to run the host application.

./host app_design.awsxclbin

3. The program's success will be shown by the messages below.

Found Platform

Platform Name: Xilinx

INFO: Reading ./vadd.awsxclbin

Loading: './vadd.awsxclbin'

TEST PASSED

3. Only these changes are required to convert the project from U200 to F1.

4. The same commands that were used for U200 may be used to develop the project for AWS F1. To

know more about the design and development flow of the accelerated application for the Alveo

U200 using the Xilinx Vitis Unified Software platform, refer to our White Paper.

5. When targeting AWS F1, you'll need to take the extra step of building an Amazon FPGA Image

(AFI). This is accomplished using AWS's create vitis afi.sh command. The steps and information

on this are discussed in the above AFI section.

Vitis AI is a dedicated development environment for boosting AI inference on Xilinx embedded platforms,

Alveo accelerator cards, or cloud-based FPGA instances. The Vitis development environment brings

together Alveo™ technologies and Amazon EC2 F1 instances to create FPGA-accelerated apps. The

Vitis® flow is built on industry-standard programming languages for both software and hardware, as well

as an open-source runtime library and optimization compiler technologies.

This method allows applications to move seamlessly between acceleration platforms. Xilinx was

able to effortlessly convert over 40+ designs from the Alveo U200 platform to F1 instances using

the Vitis tool flow, with no changes to the kernel source code and only minimal cosmetic changes

to the application source code. Follow here to know more about the design flow and the complete

https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html
https://www.logic-fruit.com/whitepaper/aes-256-ip-on-xilinx-app-store/
https://github.com/aws/aws-fpga/blob/master/Vitis/docs/Alveo_to_AWS_F1_Migration.md

Technologies

*This document is the intellectual property of Logic Fruit Technologies .
Any plagiarism or misuse is punishable according to Indian Laws

Contact Us

Gurugram
(Headquarter)

United States
(Sales Office)

806, 8th Floor
BPTP Park Centra Sector–30,

NH–8 Gurgaon – 122001
Haryana (India)

info@logic-fruit.com

+91-124 4643950

Bengaluru
(R&D House)

Sy. No 118, 3rd Floor,
Gayathri Lakefront,

Outer Ring Road, Hebbal,
Bangalore - 560 024

sales@logic-fruit.com

+91 80-69019700/01

Logic Fruit Technologies
INC 691 S Milpitas Blvd

Ste 217 (Room 9)
Milpitas CA 95035

info@logic-fruit.com

+1-408 338 9743

Thank You!
Does anyone have any questions?

http://www.logic-fruit.com/about-us/

	Whitepaper
	Last page

